scispace - formally typeset
Open Access

Development and Applications of CRISPR-Cas9 for Genome Engineering

TLDR
The development and applications of Cas9 are described for a variety of research or translational applications while highlighting challenges as well as future directions.
Abstract
Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.

read more

Citations
More filters
Journal ArticleDOI

The new frontier of genome engineering with CRISPR-Cas9

TL;DR: The power of the CRISPR-Cas9 technology to systematically analyze gene functions in mammalian cells, study genomic rearrangements and the progression of cancers or other diseases, and potentially correct genetic mutations responsible for inherited disorders is illustrated.
Journal ArticleDOI

Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.

TL;DR: In this paper, the authors characterized Cpf1, a putative class 2 CRISPR effector, which is a single RNA-guided endonuclease lacking tracrRNA and utilizes a T-rich protospacer-adjacent motif.
Journal ArticleDOI

The biogenesis, biology and characterization of circular RNAs.

TL;DR: Advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
Journal ArticleDOI

High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects

TL;DR: With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type Sp Cas9 for research and therapeutic applications and suggests a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.

In vivo genome editing using Staphylococcus aureus Cas9

TL;DR: In this paper, the RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform and has been used for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle.
References
More filters
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

RNA-Guided Human Genome Engineering via Cas9

TL;DR: The type II bacterial CRISPR system is engineer to function with custom guide RNA (gRNA) in human cells to establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
Journal ArticleDOI

CRISPR provides acquired resistance against viruses in prokaryotes

TL;DR: It is found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences, and CRISPR provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.
Journal ArticleDOI

Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.

TL;DR: This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale and can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects.
Related Papers (5)