scispace - formally typeset
Open AccessJournal ArticleDOI

Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

TLDR
Two human cellular models derived from prostate and bladder cancer provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs.
Abstract
Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

TL;DR: Coppe et al. as mentioned in this paper showed that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy, including interleukin (IL)-6 and IL-8.
Journal ArticleDOI

New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer

TL;DR: It is highlighted how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state which could function as cancer stem cells, and its effects on the immunobiology of carcinomas.
Journal ArticleDOI

Emerging Biological Principles of Metastasis

TL;DR: The cellular and molecular mechanisms involved in metastasis are summarized, with a focus on carcinomas where the most is known, and the general principles of metastasis that have begun to emerge are highlighted.
Journal ArticleDOI

Cancer stem cells revisited

TL;DR: New developments in the cancer stem cell field are discussed in relationship to changing insights into how normal stem cells maintain healthy tissues and the first successes of therapies based on the CSC concept are emerging.
Journal ArticleDOI

EMT Transition States during Tumor Progression and Metastasis.

TL;DR: The role of the transcriptional and epigenetic landscapes, gene regulatory network and their surrounding niche in controlling the transition through the different EMT states in cancer is summarized.
References
More filters
Journal ArticleDOI

Prospective identification of tumorigenic breast cancer cells

TL;DR: The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival and strategies designed to target this population may lead to more effective therapies.
Journal ArticleDOI

Epithelial-Mesenchymal Transitions in Development and Disease

TL;DR: The mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
Journal ArticleDOI

The basics of epithelial-mesenchymal transition

TL;DR: Processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias and the identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes.
Journal ArticleDOI

The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells

TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.
Journal Article

Identification of a Cancer Stem Cell in Human Brain Tumors

TL;DR: The identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation is reported.
Related Papers (5)