scispace - formally typeset
Journal ArticleDOI

Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application.

Reads0
Chats0
TLDR
The Ag/ZnO:Mn/Pt device represents an ultrafast and highly scalable memory element for developing next generation nonvolatile memories and a model concerning redox reaction mediated formation and rupture of Ag bridges is suggested to explain the memory effect.
Abstract
Through a simple industrialized technique which was completely fulfilled at room temperature, we have developed a kind of promising nonvolatile resistive switching memory consisting of Ag/ZnO:Mn/Pt with ultrafast programming speed of 5 ns, an ultrahigh R(OFF)/R(ON) ratio of 10(7), long retention time of more than 10(7) s, good endurance, and high reliability at elevated temperatures. Furthermore, we have successfully captured clear visualization of nanoscale Ag bridges penetrating through the storage medium, which could account for the high conductivity in the ON-state device. A model concerning redox reaction mediated formation and rupture of Ag bridges is therefore suggested to explain the memory effect. The Ag/ZnO:Mn/Pt device represents an ultrafast and highly scalable (down to sub-100-nm range) memory element for developing next generation nonvolatile memories.

read more

Citations
More filters
Journal ArticleDOI

Atomic structure of conducting nanofilaments in TiO2 resistive switching memory

TL;DR: In situ current-voltage and low-temperature conductivity measurements confirm that switching occurs by the formation and disruption of Ti(n)O(2n-1) (or so-called Magnéli phase) filaments, which will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films.
Journal ArticleDOI

Recent progress in resistive random access memories: Materials, switching mechanisms, and performance

TL;DR: A comprehensive review of the recent progress in the so-called resistive random access memories (RRAMs) can be found in this article, where a brief introduction is presented to describe the construction and development of RRAMs, their potential for broad applications in the fields of nonvolatile memory, unconventional computing and logic devices, and the focus of research concerning RRAMS over the past decade.
Journal ArticleDOI

Observation of conducting filament growth in nanoscale resistive memories

TL;DR: It is found that the filament growth can be dominated by cation transport in the dielectric film, and two different growth modes were observed for the first time in materials with different microstructures.
Journal ArticleDOI

Graphene oxide thin films for flexible nonvolatile memory applications.

TL;DR: The microscopic origin of the bipolar resistive switching behavior was elucidated and is attributed to rupture and formation of conducting filaments at the top amorphous interface layer formed between the graphene oxide film and the top Al metal electrode, via high-resolution transmission electron microscopy and in situ X-ray photoemission spectroscopy.
Journal ArticleDOI

Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM.

TL;DR: It is found that CFs are found to start growing from the anode rather than having to reach the cathode and grow backwards, and a new mechanism based on local redox reactions inside the oxide-electrolyte is proposed.
References
More filters
Journal ArticleDOI

Nanoionics-based resistive switching memories

TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Journal ArticleDOI

Resistive switching in transition metal oxides

TL;DR: In this paper, the authors review the current status of one of the alternatives, resistance random access memory (ReRAM), which uses a resistive switching phenomenon found in transition metal oxides.
Journal ArticleDOI

Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3

TL;DR: It is demonstrated that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO3, and to be related to the self-doping capability of the early transition metal oxides.
Journal ArticleDOI

Nanoelectronics from the bottom up

TL;DR: This review presents a brief summary of bottom-up and hybrid bottom- up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers.
Related Papers (5)