scispace - formally typeset
Journal ArticleDOI

Genetic diversity in Sargasso Sea bacterioplankton.

TLDR
The phylogenetically analysed clone libraries of eubacterial 16S ribosomal RNA genes amplified from natural populations of Sargasso Sea picoplankton indicate the presence of a novel microbial group, the SAR 11 cluster, which appears to be a significant component of this oligotrophic bacterioplankton community.
Abstract
BACTERIOPLANKTON are recognized as important agents of biogeochemical change in marine ecosystems, yet relatively little is known about the species that make up these communities. Uncertainties about the genetic structure and diversity of natural bacterioplankton populations stem from the traditional difficulties associated with microbial cultivation techniques. Discrepancies between direct counts and plate counts are typically several orders of magnitude, raising doubts as to whether cultivated marine bacteria are actually representative of dominant planktonic species1–3. We have phylogenetically analysed clone libraries of eubacterial 16S ribosomal RNA genes amplified from natural populations of Sargasso Sea picoplankton by the polymerase chain reaction4. The analysis indicates the presence of a novel microbial group, the SAR 11 cluster, which appears to be a significant component of this oligotrophic bacterioplankton community. A second cluster of lineages related to the oxygenic phototrophs—cyanobacteria, prochlorophytes and chloroplasts—was also observed. However, none of the genes matched the small subunit rRNA sequences of cultivated marine cyanobacteria from similar habitats. The diversity of 16S rRNA genes observed within the clusters suggests that these bacterioplankton may be consortia of independent lineages sharing surprisingly distant common ancestors.

read more

Citations
More filters
Journal ArticleDOI

The history of life

TL;DR: Soft Watches, biologically speaking, are the giant Dalinian DNA molecules which constitute the factors of eternity.
Journal ArticleDOI

Phylogenetic analysis of the succession of bacterial communities in the Great South Bay (Long Island).

TL;DR: The dominance of open ocean bacteria along with the presence of Aureococcus anophagefferens (Pelagophyceae) in July suggests possible open ocean coupling to bloom events.
Journal ArticleDOI

Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico

TL;DR: A diversity of rbcL sequences was obtained, spanning 3 of the 4 evolutionary clades of Form I RuBisCOs, consistent with the phenomenon of molecular microdiversity as found at other loci in marine microorganisms.
Journal ArticleDOI

Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes.

TL;DR: The results suggest that studies relying on large numbers of PCR amplification cycles to assess environmental gene diversity should take precautions to assure that clone libraries generated from amplified PCR products are not the result of contaminated PCR reagents.
Journal ArticleDOI

From genes to ecosystems: the ocean's new frontier

TL;DR: The application of new molecular and genomic techniques to the ocean is driving a scientific revolution in marine microbiology as discussed by the authors, and the results range from previously unknown groups of organisms and novel metabolic pathways to a deeper appreciation of the fundamental genetic and functional diversity of oceanic microbes.
References
More filters
Journal ArticleDOI

DNA sequencing with chain-terminating inhibitors

TL;DR: A new method for determining nucleotide sequences in DNA is described, which makes use of the 2',3'-dideoxy and arabinon nucleoside analogues of the normal deoxynucleoside triphosphates, which act as specific chain-terminating inhibitors of DNA polymerase.
Journal ArticleDOI

Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase

TL;DR: A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction, which significantly improves the specificity, yield, sensitivity, and length of products that can be amplified.
Journal ArticleDOI

Site-directed mutagenesis by overlap extension using the polymerase chain reaction.

TL;DR: In this paper, complementary oligodeoxyribonucleotide (oligo) primers and the polymerase chain reaction are used to generate two DNA fragments having overlapping ends, and these fragments are combined in a subsequent 'fusion' reaction in which the overlapping ends anneal, allowing the 3' overlap of each strand to serve as a primer for the three' extension of the complementary strand.
Related Papers (5)