scispace - formally typeset
Open AccessJournal ArticleDOI

Global sea-level budget 1993 - present

Anny Cazenave, +89 more
- 28 Aug 2018 - 
- Vol. 10, Iss: 3, pp 1551-1590
Reads0
Chats0
TLDR
In this paper, the authors present estimates of the altimetry-based global mean sea level (average variance of 3.1 +/- 0.3 mm/yr and acceleration of 0.1 mm/r2 over 1993-present), as well as of the different components of the sea level budget over 2005-present, using GRACE-based ocean mass estimates.
Abstract
Global mean sea level is an integral of changes occurring in the climate system in response to unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows detecting changes (e.g., acceleration) in one or more components. Study of the sea level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled “Regional Sea Level and Coastal Impacts”, an international effort involving the sea level community worldwide has been recently initiated with the objective of assessing the various data sets used to estimate components of the sea level budget during the altimetry era (1993 to present). These data sets are based on the combination of a broad range of space-based and in situ observations, model estimates and algorithms. Evaluating their quality, quantifying uncertainties and identifying sources of discrepancies between component estimates is extremely useful for various applications in climate research. This effort involves several tens of scientists from about fifty research teams/institutions worldwide (www.wcrp-climate.org/grand-challenges/gc-sea- level). The results presented in this paper are a synthesis of the first assessment performed during 2017-2018. We present estimates of the altimetry-based global mean sea level (average rate of 3.1 +/- 0.3 mm/yr and acceleration of 0.1 mm/yr2 over 1993-present), as well as of the different components of the sea level budget (http://doi.org/10.17882/54854). We further examine closure of the sea level budget, comparing the observed global mean sea level with the sum of components. Ocean thermal expansion, glaciers, Greenland and Antarctica contribute by 42%, 21%, 15% and 8% to the global mean sea level over the 1993-present. We also study the sea level budget over 2005-present, using GRACE-based ocean mass estimates instead of sum of individual mass components. Results show closure of the sea level budget within 0.3 mm/yr. Substantial uncertainty remains for the land water storage component, as shown in examining individual mass contributions to sea level.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Climate Change 2007: The Physical Science Basis.

TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Journal ArticleDOI

Mass balance of the Greenland Ice Sheet from 1992 to 2018

Imbie Team
- 10 Dec 2019 - 
TL;DR: Comparing and combining 26 individual satellite measurements of changes in the Greenland Ice Sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance produces comparable results that approach the trajectory of the highest rates of sea-level rise projected by the IPCC.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Journal Article

Climate Change 2007: The Physical Science Basis.

TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Journal ArticleDOI

Global Hydrological Cycles and World Water Resources

TL;DR: In this paper, the authors focus on the flow of water in natural and artificial reservoirs and reduce the vulnerability of people living under water stress to seasonal patterns and increasing probability of extreme events.

Global hydrological cycles and world water resources

Taikan Oki
TL;DR: Climate change is expected to accelerate water cycles and thereby increase the available RFWR, which would slow down the increase of people living under water stress; however, changes in seasonal patterns and increasing probability of extreme events may offset this effect.
Related Papers (5)

Mass balance of the Antarctic ice sheet from 1992 to 2017.

Andrew Shepherd, +82 more
- 14 Jun 2018 -