scispace - formally typeset
Open AccessJournal ArticleDOI

Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54

Reads0
Chats0
TLDR
The present study shows that loss of function of GPR54 is a cause of IHH, and it identifies GPR 54 and possibly KiSS1 protein-derived peptide as playing a major and previously unsuspected role in the physiology of the gonadotropic axis.
Abstract
Hypogonadotropic hypogonadism is defined as a deficiency of the pituitary secretion of follicle-stimulating hormone and luteinizing hormone, which results in the impairment of pubertal maturation and of reproductive function. In the absence of pituitary or hypothalamic anatomical lesions and of anosmia (Kallmann syndrome), hypogonadotropic hypogonadism is referred to as isolated hypogonadotropic hypogonadism (IHH). A limited number of IHH cases are due to loss-of-function mutations of the gonadotropin-releasing hormone receptor. To identify additional gene defects leading to IHH, a large consanguineous family with five affected siblings and with a normal gonadotropin-releasing hormone receptor coding sequence was studied. Homozygosity whole-genome mapping allowed the localization of a new locus within the short arm of chromosome 19 (19p13). Sequencing of several genes localized within this region showed that all affected siblings of the family carried a homozygous deletion of 155 nucleotides in the GPR54 gene. This deletion encompassed the splicing acceptor site of intron 4-exon 5 junction and part of exon 5. The deletion was absent or present on only one allele in unaffected family members. GPR54 has been initially identified as an orphan G protein-coupled receptor with 40% homology to galanin receptors. Recently, a 54-aa peptide derived from the KiSS1 protein was identified as a ligand of GPR54. The present study shows that loss of function of GPR54 is a cause of IHH, and it identifies GPR54 and possibly KiSS1 protein-derived peptide as playing a major and previously unsuspected role in the physiology of the gonadotropic axis.

read more

Citations
More filters
Journal ArticleDOI

Integrative Control of Energy Balance and Reproduction in Females

TL;DR: The present review goes over the main sites implicated in the control of energy balance linked to reproductive success and summarizes the most important metabolic and neuro endocrine signals that participate in reproductive events with special emphasis on the role of recently discovered neuroendocrine peptides.
Journal ArticleDOI

The involvement of gonadotropin inhibitory hormone and kisspeptin in the metabolic regulation of reproduction

TL;DR: Nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction and the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status are summarized.
Journal ArticleDOI

Evidence that the arcuate nucleus is an important site of progesterone negative feedback in the ewe.

TL;DR: It is concluded that the arcuate nucleus of the ARC is one important site of progesterone-negative feedback in the ewe, which is consistent with the hypothesis that ARC dynorphin neurons mediate this action of progestersone.
Journal ArticleDOI

A Multi-Oscillatory Circadian System Times Female Reproduction

TL;DR: This review will point to the critical position of the Kp neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock.
Journal ArticleDOI

Tooth agenesis and orofacial clefting: genetic brothers in arms?

TL;DR: A systematic review of the current literature to identify the genes and genomic loci contributing to syndromic or non-syndromic co-occurrence of tooth agenesis and orofacial clefts to gain insight into the molecular mechanisms underlying their dual involvement in the development of teeth and facial primordia.
References
More filters
Journal Article

Parametric and nonparametric linkage analysis: a unified multipoint approach.

TL;DR: It is shown that NPL is robust to uncertainty about mode of inheritance, is much more powerful than commonly used nonparametric methods, and loses little power relative to parametric linkage analysis, and appears to be the method of choice for pedigree studies of complex traits.
Journal ArticleDOI

The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54.

TL;DR: Stimulation of oxytocin secretion after kisspeptin administration to rats confirmed this hypothesis that human GPR54 was highly expressed in placenta, pituitary, pancreas, and spinal cord, suggesting a role in the regulation of endocrine function.
Journal Article

Faster sequential genetic linkage computations.

TL;DR: A variety of algorithmic improvements are described, which synthesize biological principles with computer science techniques, to effectively restructure the time-consuming computations in genetic linkage analysis.
Journal ArticleDOI

Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.

TL;DR: It is shown that KiSS-1 encodes a carboxy-terminally amidated peptide with 54 amino-acid residues, which is isolated from human placenta as the endogenous ligand of an orphan G-protein-coupled receptor (hOT7T175) and named ‘metastin’.
Related Papers (5)