scispace - formally typeset
Open AccessJournal ArticleDOI

Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54

Reads0
Chats0
TLDR
The present study shows that loss of function of GPR54 is a cause of IHH, and it identifies GPR 54 and possibly KiSS1 protein-derived peptide as playing a major and previously unsuspected role in the physiology of the gonadotropic axis.
Abstract
Hypogonadotropic hypogonadism is defined as a deficiency of the pituitary secretion of follicle-stimulating hormone and luteinizing hormone, which results in the impairment of pubertal maturation and of reproductive function. In the absence of pituitary or hypothalamic anatomical lesions and of anosmia (Kallmann syndrome), hypogonadotropic hypogonadism is referred to as isolated hypogonadotropic hypogonadism (IHH). A limited number of IHH cases are due to loss-of-function mutations of the gonadotropin-releasing hormone receptor. To identify additional gene defects leading to IHH, a large consanguineous family with five affected siblings and with a normal gonadotropin-releasing hormone receptor coding sequence was studied. Homozygosity whole-genome mapping allowed the localization of a new locus within the short arm of chromosome 19 (19p13). Sequencing of several genes localized within this region showed that all affected siblings of the family carried a homozygous deletion of 155 nucleotides in the GPR54 gene. This deletion encompassed the splicing acceptor site of intron 4-exon 5 junction and part of exon 5. The deletion was absent or present on only one allele in unaffected family members. GPR54 has been initially identified as an orphan G protein-coupled receptor with 40% homology to galanin receptors. Recently, a 54-aa peptide derived from the KiSS1 protein was identified as a ligand of GPR54. The present study shows that loss of function of GPR54 is a cause of IHH, and it identifies GPR54 and possibly KiSS1 protein-derived peptide as playing a major and previously unsuspected role in the physiology of the gonadotropic axis.

read more

Citations
More filters
Book ChapterDOI

Effects of Environmental Endocrine Disruptors and Phytoestrogens on the Kisspeptin System

TL;DR: This chapter reviews the small but growing body of evidence for endocrine disruption of the kisspeptin system by the exogenous estrogenic compounds bisphenol A, polychlorinated biphenyl mixtures, and the phytoestrogen genistein.
Journal ArticleDOI

A system biology approach to identify regulatory pathways underlying the neuroendocrine control of female puberty in rats and nonhuman primates.

TL;DR: Emerging evidence suggesting that pubertal GnRH genes are arranged as functionally connected networks organized, both internally and across sub-networks, in a hierarchical fashion is discussed.
Journal ArticleDOI

The Physiological Role of Arcuate Kisspeptin Neurons in the Control of Reproductive Function in Female Rats

TL;DR: Female rats with kisspeptin knockdown in the ARC displayed a significantly reduced number of both regular and complete oestrous cycles and significantly longer cycles over the 100-day period of the study, which suggests that maintenance of ARC-kisspeptin levels is essential for normal pulsatile LH release and oESTrous cyclicity.
Journal ArticleDOI

RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions.

TL;DR: The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities as well as on their implication in the control of different physiological functions including feeding, reproduction and pain.
Journal ArticleDOI

The Emerging Role(s) for Kisspeptin in Metabolism in Mammals.

TL;DR: The emerging endocrine role of kisspeptin in regulating metabolic function is reviewed, revealing it as a significant player in regulating glucose homeostasis, feeding behavior, body composition as well as cardiac function.
References
More filters
Journal Article

Parametric and nonparametric linkage analysis: a unified multipoint approach.

TL;DR: It is shown that NPL is robust to uncertainty about mode of inheritance, is much more powerful than commonly used nonparametric methods, and loses little power relative to parametric linkage analysis, and appears to be the method of choice for pedigree studies of complex traits.
Journal ArticleDOI

The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54.

TL;DR: Stimulation of oxytocin secretion after kisspeptin administration to rats confirmed this hypothesis that human GPR54 was highly expressed in placenta, pituitary, pancreas, and spinal cord, suggesting a role in the regulation of endocrine function.
Journal Article

Faster sequential genetic linkage computations.

TL;DR: A variety of algorithmic improvements are described, which synthesize biological principles with computer science techniques, to effectively restructure the time-consuming computations in genetic linkage analysis.
Journal ArticleDOI

Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.

TL;DR: It is shown that KiSS-1 encodes a carboxy-terminally amidated peptide with 54 amino-acid residues, which is isolated from human placenta as the endogenous ligand of an orphan G-protein-coupled receptor (hOT7T175) and named ‘metastin’.
Related Papers (5)