scispace - formally typeset
Open AccessJournal ArticleDOI

Identification of a Protein from Rust Fungi Transferred from Haustoria into Infected Plant Cells

TLDR
The localization of RTP1p suggests that it might play an important role in the maintenance of the biotrophic interaction and is identified in the related rust fungus Uromyces striatus.
Abstract
The formation of haustoria is one of the hallmarks of the interaction of obligate biotrophic fungi with their host plants. In addition to their role in nutrient uptake, it is hypothesized that haustoria are actively involved in establishing and maintaining the biotrophic relationship. We have identified a 24.3-kDa protein that exhibited a very unusual allocation. Rust transferred protein 1 from Uromyces fabae (Uf-RTP1p) was not only detected in the host parasite interface, the extrahaustorial matrix, but also inside infected plant cells by immunofluorescence and electron microscopy. Uf-RTP1p does not exhibit any similarity to sequences currently listed in the public databases. However, we identified a homolog of Uf-RTP1p in the related rust fungus Uromyces striatus (Us-RTP1p). The localization of Uf-RTP1p and Us-RTP1p inside infected plant cells was confirmed, using four independently raised polyclonal antibodies. Depending on the developmental stage of haustoria, Uf-RTP1p was found in increasing amounts in host cells, including the host nucleus. Putative nuclear localization signals (NLS) were found in the predicted RTP1p sequences. However, functional efficiency could only be verified for the Uf-RTP1p NLS by means of green fluorescent protein fusions in transformed tobacco protoplasts. Western blot analysis indicated that Uf-RTP1p and Us-RTP1p most likely enter the host cell as N-glycosylated proteins. However, the mechanism by which they cross the extrahaustorial membrane and accumulate in the host cytoplasm is unknown. The localization of RTP1p suggests that it might play an important role in the maintenance of the biotrophic interaction.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The plant immune system

TL;DR: A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production and provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms.
Journal ArticleDOI

Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis

Jörg Kämper, +80 more
- 02 Nov 2006 - 
TL;DR: The discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi.
Journal ArticleDOI

Fungal Effectors and Plant Susceptibility

TL;DR: This review describes the effector repertoires of 84 plant-colonizing fungi and focuses on the mechanisms that allow these fungal effectors to promote virulence or compatibility, discuss common plant nodes that are targeted by effectors, and provide recent insights into effector evolution.
Journal ArticleDOI

Emerging concepts in effector biology of plant-associated organisms.

TL;DR: This review summarizes recent findings in the field of effector biology and highlights the common concepts that have emerged from the study of cellular plant pathogen effectors.
Journal ArticleDOI

Roles for Rice Membrane Dynamics and Plasmodesmata during Biotrophic Invasion by the Blast Fungus

TL;DR: Analysis of biotrophic blast invasion will significantly contribute to the understanding of normal plant processes and allow the characterization of secreted fungal effectors that affect these processes.
References
More filters
Journal ArticleDOI

Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Journal ArticleDOI

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.
Book

Molecular Cloning: A Laboratory Manual

TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Journal Article

Cleavage of structural proteins during the assemble of the head of bacterio-phage T4

U. K. Laemmli
- 01 Jan 1970 - 
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Journal ArticleDOI

A revised medium for rapid growth and bio assays with tobacco tissue cultures

TL;DR: In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provide a basis for understanding how compartment-specific redox dynamics may operate in retrograde signaling and stress 67 acclimation in plants.
Related Papers (5)

Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis

Jörg Kämper, +80 more
- 02 Nov 2006 -