scispace - formally typeset
Open AccessJournal ArticleDOI

Improved simulation of fire–vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1)

TLDR
In this paper, a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes.
Abstract
. The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in Australian savannas. We also show that the model simulates biomass recovery rates consistent with observations from several different regions of the world characterised by resprouting vegetation. The new model (LPX-Mv1) produces an improved simulation of observed vegetation composition and mean annual burnt area, by 33 and 18% respectively compared to LPX.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Drought and resprouting plants

TL;DR: The strategy of resprout needs to be modelled explicitly to improve estimates of future climate-change impacts on the carbon cycle, but this will require several important knowledge gaps to be filled before resprouting can be properly implemented.
References
More filters
Journal Article

R: A language and environment for statistical computing.

R Core Team
- 01 Jan 2014 - 
TL;DR: Copyright (©) 1999–2012 R Foundation for Statistical Computing; permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and permission notice are preserved on all copies.
Journal ArticleDOI

Very high resolution interpolated climate surfaces for global land areas.

TL;DR: In this paper, the authors developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution).
Journal ArticleDOI

Generalized Linear Models

Eric R. Ziegel
- 01 Aug 2002 - 
TL;DR: This is the Ž rst book on generalized linear models written by authors not mostly associated with the biological sciences, and it is thoroughly enjoyable to read.
Journal ArticleDOI

Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset

TL;DR: In this paper, an updated gridded climate dataset (referred to as CRU TS3.10) from monthly observations at meteorological stations across the world's land areas is presented.
Related Papers (5)