scispace - formally typeset
Open AccessJournal ArticleDOI

Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides

TLDR
IL-22 is identified as a new cytokine expressed by Th17 cells that synergizes with IL- 17A or IL-17F to regulate genes associated with skin innate immunity.
Abstract
Th17 cells are a distinct lineage of effector CD4+ T cells characterized by their production of interleukin (IL)-17. We demonstrate that Th17 cells also expressed IL-22, an IL-10 family member, at substantially higher amounts than T helper (Th)1 or Th2 cells. Similar to IL-17A, IL-22 expression was initiated by transforming growth factor β signaling in the context of IL-6 and other proinflammatory cytokines. The subsequent expansion of IL-22–producing cells was dependent on IL-23. We further demonstrate that IL-22 was coexpressed in vitro and in vivo with both IL-17A and IL-17F. To study a functional relationship among these cytokines, we examined the expression of antimicrobial peptides by primary keratinocytes treated with combinations of IL-22, IL-17A, and IL-17F. IL-22 in conjunction with IL-17A or IL-17F synergistically induced the expression of β-defensin 2 and S100A9 and additively enhanced the expression of S100A7 and S100A8. Collectively, we have identified IL-22 as a new cytokine expressed by Th17 cells that synergizes with IL-17A or IL-17F to regulate genes associated with skin innate immunity.

read more

Citations
More filters
Journal ArticleDOI

IL-17 and Th17 Cells.

TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Journal ArticleDOI

The gut microbiota — masters of host development and physiology

TL;DR: The gut microbiota has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism.
Journal ArticleDOI

IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.

TL;DR: IL-6 orchestrates a series of 'downstream' cytokine-dependent signaling pathways that, in concert with TGF-β, amplify RORγt-dependent differentiation of TH-17 cells.
Journal ArticleDOI

Development, cytokine profile and function of human interleukin 17-producing helper T cells

TL;DR: It is demonstrated that IL-23 and IL-1β induced the development of human and mouse TH-17 cells expressing IL-17A,IL-17F, IL-22, Il-26, interferon-γ, the chemokine CCL20 and transcription factor RORγt, and that human TH- 17 cells may regulate innate immunity in epithelial cells.
Journal ArticleDOI

Interleukin-22, a T H 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis

TL;DR: The results suggest that TH17 cells, through the production of both IL-22 and IL-17, might have essential functions in host defence and in the pathogenesis of autoimmune diseases such as psoriasis.
References
More filters
Journal ArticleDOI

Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.

TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Journal ArticleDOI

Interleukin 17–producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages

TL;DR: Findings provide a basis for understanding how inhibition of IFN-γ signaling enhances development of pathogenic TH-17 effector cells that can exacerbate autoimmunity.
Journal ArticleDOI

A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17

TL;DR: In vivo, antibody to IL- 17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused Chemokine production and leukocyte infiltration, indicating a unique T helper lineage that regulates tissue inflammation.
Journal ArticleDOI

IL-23 drives a pathogenic T cell population that induces autoimmune inflammation

TL;DR: Using passive transfer studies, it is confirmed that these IL-23–dependent CD4+ T cells are highly pathogenic and essential for the establishment of organ-specific inflammation associated with central nervous system autoimmunity.
Journal ArticleDOI

TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-Producing T cells

TL;DR: The data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation ofIL-17-producing T cells.
Related Papers (5)