scispace - formally typeset
Journal ArticleDOI

Local Ca2+ detection and modulation of synaptic release by astrocytes

TLDR
Evidence is provided that astrocytes are integrated in local synaptic functioning in adult brain through GTP- and inositol-1,4,5-trisphosphate–dependent signaling and is relevant for basal synaptic function.
Abstract
Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca(2+)](i) elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca(2+) responses. This Ca(2+) activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate-dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca(2+)](i) or blocking a receptor mediating local astrocyte Ca(2+) signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.

read more

Citations
More filters
Journal ArticleDOI

Animal models of transcranial direct current stimulation: Methods and mechanisms

TL;DR: It is discussed how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary.
Journal ArticleDOI

Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo

TL;DR: It is reported that selective photostimulation of astrocytes with channelrhodopsin-2 in primary visual cortex enhances both excitatory and inhibitory synaptic transmission, through the activation of type 1a metabotropic glutamate receptors.
Journal ArticleDOI

Probing the complexities of astrocyte calcium signaling

TL;DR: Progress in the past few years, fueled by methodological advances, has reignited interest in astrocyte Ca(2+) signaling for brain function and dysfunction.
Journal ArticleDOI

Diversity and Specificity of Astrocyte-neuron Communication.

TL;DR: Diversity and complexity of astrocyte-synapse interactions greatly enhance the degrees of freedom of the neural circuits and the consequent computational power of the Neural systems.
Book ChapterDOI

Gliotransmission and the Tripartite Synapse

TL;DR: By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.
References
More filters
Journal ArticleDOI

Tripartite synapses: astrocytes process and control synaptic information

TL;DR: There is an emerging view, which is reviewed herein, in which brain function actually arises from the coordinated activity of a network comprising both neurons and glia, rather than the classically accepted paradigm that brain function results exclusively from neuronal activity.
Journal ArticleDOI

Control of synapse number by glia.

TL;DR: It is shown that few synapses form in the absence of glial cells and that the fewsynapses that do form are functionally immature, and that CNS synapse number can be profoundly regulated by nonneuronal signals.
Journal ArticleDOI

Long-term potentiation depends on release of d -serine from astrocytes

TL;DR: It is demonstrated that Ca2+-dependent release of d-serine from an astrocyte controls NMDAR-dependent plasticity in many thousands of excitatory synapses nearby.
Journal ArticleDOI

Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses

TL;DR: It is found that hypertonic solutions do not act through changes in intracellular calcium, which means that the synaptic release probability depends on the size of the readily releasable pool.
Journal ArticleDOI

Neuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors

TL;DR: The results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.
Related Papers (5)