scispace - formally typeset
Journal ArticleDOI

Local Ca2+ detection and modulation of synaptic release by astrocytes

TLDR
Evidence is provided that astrocytes are integrated in local synaptic functioning in adult brain through GTP- and inositol-1,4,5-trisphosphate–dependent signaling and is relevant for basal synaptic function.
Abstract
Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca(2+)](i) elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca(2+) responses. This Ca(2+) activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate-dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca(2+)](i) or blocking a receptor mediating local astrocyte Ca(2+) signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.

read more

Citations
More filters
Journal ArticleDOI

Endfeet serve as diffusion-limited subcellular compartments in astrocytes.

TL;DR: It is suggested that molecular diffusion is not uniform across the intracellular environment and that subcellular compartments are present in astrocytes, similar to neurons, which may enable them to perform complex computations by providing distinct information storage/processing capacity among processes.
Journal ArticleDOI

Stargazing: Monitoring subcellular dynamics of brain astrocytes.

TL;DR: This review focuses on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity.
Journal ArticleDOI

A novel digital implementation of neuron---astrocyte interactions

TL;DR: It is demonstrated that the digital astrocyte is able to activate the digital neuron or change the neuron spiking frequency and therefore enhances the information processing capabilities of the neuron circuit.
Journal ArticleDOI

A(2a) adenosine receptor mediates PKA-dependent glutamate release from synaptic-like vesicles and Ca(2+) efflux from an IP(3)- and ryanodine-insensitive intracellular calcium store in astrocytes.

TL;DR: The results of the present study show that A2a adenosine receptor/PKA promotes glutamate release from synaptic-like vesicles and stimulates Ca2+ efflux from an IP3- and ryanodine-insensitive intracellular calcium store.
Journal ArticleDOI

The Gliocentric Brain.

TL;DR: By broadening brain information processing beyond neurons, progress in understanding higher level brain functions, as well as neurodegenerative and neurodevelopmental disorders, will progress beyond the impasse that has been evident for decades.
References
More filters
Journal ArticleDOI

Tripartite synapses: astrocytes process and control synaptic information

TL;DR: There is an emerging view, which is reviewed herein, in which brain function actually arises from the coordinated activity of a network comprising both neurons and glia, rather than the classically accepted paradigm that brain function results exclusively from neuronal activity.
Journal ArticleDOI

Control of synapse number by glia.

TL;DR: It is shown that few synapses form in the absence of glial cells and that the fewsynapses that do form are functionally immature, and that CNS synapse number can be profoundly regulated by nonneuronal signals.
Journal ArticleDOI

Long-term potentiation depends on release of d -serine from astrocytes

TL;DR: It is demonstrated that Ca2+-dependent release of d-serine from an astrocyte controls NMDAR-dependent plasticity in many thousands of excitatory synapses nearby.
Journal ArticleDOI

Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses

TL;DR: It is found that hypertonic solutions do not act through changes in intracellular calcium, which means that the synaptic release probability depends on the size of the readily releasable pool.
Journal ArticleDOI

Neuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors

TL;DR: The results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.
Related Papers (5)