scispace - formally typeset
Open AccessJournal ArticleDOI

Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring

TLDR
This manuscript is the first methodological example encompassing (and enhancing) most of the available methods for estimating beta-diversity from remotely sensed imagery and potentially relate them to species diversity in the field.
Abstract
Biodiversity includes multiscalar and multitemporal structures and processes, with different levels of functional organization, from genetic to ecosystemic levels. One of the mostly used methods to infer biodiversity is based on taxonomic approaches and community ecology theories. However, gathering extensive data in the field is difficult due to logistic problems, overall when aiming at modelling biodiversity changes in space and time, which assumes statistically sound sampling schemes. In this view, airborne or satellite remote sensing allow to gather information over wide areas in a reasonable time. Most of the biodiversity maps obtained from remote sensing have been based on the inference of species richness by regression analysis. On the contrary, estimating compositional turnover (beta-diversity) might add crucial information related to relative abundance of different species instead of just richness. Presently, few studies have addressed the measurement of species compositional turnover from space. Extending on previous work, in this manuscript we propose novel techniques to measure beta-diversity from airborne or satellite remote sensing, mainly based on: i) multivariate statistical analysis, ii) the spectral species concept, iii) self-organizing feature maps, iv) multi- dimensional distance matrices, and the v) Rao's Q diversity. Each of these measures allow to solve one or several issues related to turnover measurement. This manuscript is the first methodological example encompassing (and enhancing) most of the available methods for estimating beta-diversity from remotely sensed imagery and potentially relate them to species diversity in the field.

read more

Content maybe subject to copyright    Report

Methods Ecol Evol. 2018;9:1787–1798. wileyonlinelibrary.com/journal/mee3  
|
 
1787
© 2018 The Authors. Methods in Ecology and
Evolution © 2018 British Ecological Society
Received:22September2017 
|
Accepted:11November2017
DOI: 10.1111/2041-210X.12941
IMPROVING BIODIVERSITY MONITORING
USING SATELLITE REMOTE SENSING
Measuring β-diversity by remote sensing: A challenge for
biodiversity monitoring
Duccio Rocchini
1,2,3
|
4
|
5
|
6
|
Daniel Doktor
7
|
3,8
|
9
|
4
|

10
|
11
|
12
|
13
|

7
|
14,15
|
16
|
17
|
Carlo Ricotta
18
|
19
|
20
|

21
|
22
1
CenterAgricultureFoodEnvironment,UniversityofTrento,S.Micheleall’Adige(TN),Italy;
2
CentreforIntegrativeBiology,UniversityofTrento,Povo(TN),
Italy;
3
DepartmentofBiodiversityandMolecularEcology,FondazioneEdmundMach,ResearchandInnovationCentre,S.Micheleall’Adige(TN),Italy;
4
UMR-
TETIS,IRSTEAMontpellier,MaisondelaTélédétection,MontpellierCedex5,France;
5
InstituteofZoology,TheZoologicalSocietyofLondon,London,UK;
6
SchoolofComputerScience,AstonUniversity,Birmingham,UK;
7
DepartmentComputationalLandscapeEcology,HelmholtzCentreforEnvironmental
Research–UFZ,Leipzig,Germany;
8
DepartmentofComputerScienceandEngineering,UniversityofBologna,Bologna,Italy;
9
InstitutfürGeographieFriedrich-
Alexander,UniversitätErlangen-Nürnberg,Erlangen,Germany;
10
SchoolofGeography,UniversityofNottingham,Nottingham,UK;
11
SchoolofBiology,Faculty
ofbiologicalScience,UniversityofLeeds,Leeds,UK;
12
InstituteofMediterraneanAgriculturalandEnvironmentalSciences(ICAAM),UniversidadedeEvora,
Evora,Portugal;
13
SchoolofBiology,UniversityofLeeds,Leeds,UK;
14
DepartmentLandscapeEcologyandEnvironmentalSystemAnalysis,TechnischeUniversität
Braunschweig,Braunschweig,Germany;
15
GeographyDepartment,Humboldt-UniversitätzuBerlin,Berlin,Germany;
16
DepartmentofPathology,Microbiology,and
Immunology,SchoolofVeterinaryMedicine,UniversityofCalifornia,Davis,CA,USA;
17
MundialisGmbH&Co.KG,Bonn,Germany;
18
DepartmentofEnvironmental
Biology,UniversityofRome“LaSapienza”,Rome,Italy;
19
KarlsruherInstitutfürTechnologie(KIT),InstitutfürGeographieundGeoökologie,Karlsruhe,Germany;
20
NaturalEnvironmentCentre,FinnishEnvironmentInstitute(SYKE),Helsinki,Finland;
21
DepartmentofRemoteSensing,RemoteSensingandBiodiversityResearch
Group,UniversityofWuerzburg,Wuerzburg,Germanyand
22
AzimPremjiUniversity,Bangalore,India

DuccioRocchini
Emails:ducciorocchini@gmail.com;
duccio.rocchini@fmach.it

LucyBastin,KnowledgeManagement
Unit,JointResearchCentreoftheEuropean
Commission,Ispra,Italy
HandlingEditor:FrancescaParrini
Abstract
1. Biodiversityincludesmultiscalarandmultitemporalstructuresandprocesses,with
differentlevelsoffunctionalorganization,fromgenetictoecosystemiclevels.One
ofthemostlyusedmethodstoinferbiodiversityisbasedontaxonomicapproaches
andcommunityecologytheories.However,gatheringextensivedatainthefieldis
difficultduetologisticproblems,especiallywhenaimingatmodellingbiodiversity
changesinspaceandtime,whichassumesstatisticallysoundsamplingschemes.In
thiscontext,airborneorsatelliteremotesensingallowsinformationtobegathered
overwideareasinareasonabletime.
2. Mostofthebiodiversitymapsobtainedfromremotesensinghavebeenbasedon
theinferenceofspeciesrichnessbyregressionanalysis.Onthecontrary,estimating
compositionalturnover(β-diversity)mightaddcrucialinformationrelatedtorela-
tiveabundanceofdifferentspeciesinsteadofjustrichness.Presently,fewstudies
haveaddressedthemeasurementofspeciescompositionalturnoverfromspace.
3. Extendingonpreviouswork,inthismanuscript,weproposenoveltechniquesto
measure β-diversity from airborne or satellite remote sensing, mainly based on:
(1)multivariatestatisticalanalysis,(2)thespectralspeciesconcept,(3)self-organizing

1788 
|
  
Methods in Ecology and Evoluon
ROCCHINI et al.
|
Biodiversitycannotbefullyinvestigatedwithoutconsideringthespa-
tialcomponentofitsvariation.Infact,itisknownthatthedispersalof
speciesoverwideareasisdrivenbyspatialconstraintsdirectlyrelated
tothedistanceamongsites.Anegativeexponentialdispersalkernel
isusuallyadoptedtomathematicallydescribetheoccupancyofnew
sitesbyspecies,asfollows:
whered
ik
=distancebetweentwolocationsi and k and aisaparam-
eterregulatingthedispersalfromlocalizedareas(lowvaluesofa)to
widespreadones (highvalues ofa; Meentemeyer,Anacker,Mark, &
Rizzo,2008).
Inthissense,distanceacquiresasignificantroleinecologytoesti-
matebiodiversitychange.Hence,spatiallyexplicitmethodshavebeen
acknowledgedinecologyforprovidingrobustestimatesofdiversity
atdifferenthierarchicallevels:fromindividuals(Tyre,Possingham,&
Lindenmayer,2001),topopulations(Vernesietal.,2012),tocommu-
nities(Rocchini,AndreiniButini,&Chiarucci,2005).
Whendealingwithspatialexplicitmethods,remotesensingimages
represent a powerful tool (Rocchini et al., 2017), particularly when
coupling information on compositional properties of the landscape
withitsstructure(Figure1).Remotesensinghaswidelybeenusedfor
conservationpracticesincludingverydifferenttypesofdatasuchas
nightlightsdata(Mazoretal.,2013),LandSurfaceTemperatureesti-
matedfromMODIS data(Metz,Rocchini,&Neteler,2014),spectral
indices(Gillespie,2005).
Mostoftheremotesensingapplicationsforbiodiversityestima-
tionhavereliedon the estimateoflocal diversityhotspots, consid-
eringlandusediversity(Wegmannetal.,2017)orcontinuousspatial
variabilityofthespectralsignal(Rocchinietal.,2010).Thisismainly
grounded in the assumption that a higher landscape heterogeneity
is strictly related to a higher amount of species occupying differ-
ent niches (Scmheller et al., in press). However, given two sites s
1
and s
2
,thefinal diversityisnotonlyrelatedtothespecies/spectral
richness ofs
1
and s
2
, but overallto the amount of shared species/
spectralvalues.Inotherwords,thelowerthetheirintersections
1
s
2
,
the higher will be the total diversity, while the lowest total diver-
sitywillbe reachedwhen s
1
s
2
= s
1
s
2
. Such intersection has been
widelystudiedinecology,afterthedevelopmentofβ-diversitytheory
(Whittaker,1960).
Tuomisto etal. (2003) demonstrated the power of substituting
distance in Equation 1 by spectral distance to directly account for
the distance between sites in an environmental space, instead ofa
merelyspatialone. However,whilespectraldistance examples exist
when measuring the β-diversity among pairs of sites (e.g.,Rocchini,
HernándezStefanoni,&He,2015),fewstudieshavetestedthepossi-
bilityofmeasuringβ-diversityoverwideareasconsideringseveralsites
atthesametime(howeverseeAlahuhtaetal.,2017;Harris,Charnock,
&Lucas,2015).Thisisespeciallytruewhenconsideringthedevelop-
mentofremotesensingtools(Rocchini&Neteler,2012)fordiversity
estimateinwhichtheconceptofβ-diversityisstillpioneering.
The aim of this paper is to present the most novel methods to
measureβ-diversityfromremotelysensedimagerybasedonthemost
recentlypublishedecologicalmodels.Inparticular,wewilldealwith:
(1)multivariatestatisticaltechniques,(2)theapplicabilityofthespec-
tralspeciesconcept,(3)multidimensionaldistancematrices,(4)met-
ricscouplingabundanceanddistance-basedmeasures.
Thismanuscriptisthefirstmethodologicalexampleencompassing
(and enhancing) most of the available methods for estimating β-di-
versityfromremotelysensedimageryandpotentiallyrelatethemto
speciesdiversityinthefield.
|


Univariatestatisticshavebeenusedtodirectlyfindrelationsbetween
spectralandspeciesdiversity.However,theamountofvariabilityex-
plainedbysinglebands/vegetationindicesversusspeciesdiversityis
generallyrelativelylow,duetothefactthatdifferentaspectsrelated
tothecomplexityofhabitatsmightactinshapingdiversity,fromdis-
turbanceandlanduseatlocalscalestoclimateandelementfluxesat
globalscales.
Ordination techniques are designed to quantitatively describe
multivariategradualtransitionsinthespeciescompositionofsampled
sites.Measuringthedistancebetweentwosamplingsitesinthemulti-
dimensionalordinationspaceisagoodproxyofthechangeinspecies
composition.Whenthismeasureisrelatedtothegeographicaldistance
(1)
F
=
N
K=1
e
d
ik
a
featuremaps,(4)multidimensionaldistancematrices,andthe(5)Rao'sQdiversity.
Eachofthesemeasuresaddressesoneorseveralissuesrelatedtoturnovermeas-
urement.Thismanuscriptisthefirstmethodological exampleencompassing(and
enhancing)mostoftheavailablemethodsforestimatingβ-diversityfromremotely
sensedimageryandpotentiallyrelatingthemtospeciesdiversityinthefield.

β-diversity,Kohonenself-organizingfeaturemaps,Rao'sQdiversityindex,remotesensing,
satelliteimagery,sparsegeneralizeddissimilaritymodel,spectralspeciesconcept

    
|
 1789
Methods in Ecology and Evoluon
ROCCHINI et al.
betweentheconsideredsites,thebetadiversityatthisparticularscale
canbeassessed.
Ofthevariousavailableordinationtechniques, detrendedcorre-
spondenceanalysis(DCA;Hill&Gauch,1980)isparticularlysuitable
for such analyses. The axes (i.e., gradients) of the DCA ordination
spacearescaledinSDunits,whereadistanceof4SDisrelatedtoafull
speciesturnover.Thisenablesaversatileanalysisthateasilyreveals
whethertwosampledsitesstillhavespeciesincommon.
Severalstudies havemapped the ordination space using remote
sensing data (e.g., Feilhauer & Schmidtlein, 2009; Feilhauer, Faude,
&Schmidtlein, 2011; Feilhaueretal.,2014;Gu, Singh,&Townsend,
2015; Harrisetal., 2015; Leitãoetal., 2015; Neumann etal., 2015;
Schmidtlein&Sassin,2004;Schmidtlein,Zimmermann,Schüpferling,
&Weiss,2007).Forthispurpose,theaxesscoresofthesampledsites
are regressed against the corresponding canopy reflectance values
extractedfromair-orspaceborneimagedata.Theresultingmultivar-
iateregressionmodels,oneperordinationaxisandmostoftengener-
atedwithmachine learning regressiontechniques, aresubsequently
appliedontheimagedataforaspatialpredictionofordinationscores.
Eachpixeloftheimagedataisassignedtoaspecificpositioninthe
ordinationspacethatindicatesitsspeciescomposition.Theresulting
gradientmapsareapowerfultoolforanalysesofbetadiversityacross
different spatial scales (Feilhauer & Schmidtlein, 2009; Hernandez-
Stefanonietal.,2012).
AsimpleanalysisofthevariabilityoftheDCAscoresinadefined
pixelneighbourhood(i.e.,amovingwindow)resultsinaefficientbeta
diversityassessment.Thespatialscaleofthisassessmentcanbevaried
eitherbyresamplingthegradientmaptoacoarserspatialresolution
(i.e.,pixelsize)orbychangingthekernelsizeoftheconsideredpixel
neighbourhood. Such techniques have been further developed e.g.
for spatial conservation prioritization programmes such as Zonation
(Moilanenetal.,2005;Moilanen,Kujala,&Leathwick,2009).
Figure2showsanexampleofaDCA-based assessmentofbeta
diversityonaverylocalscale(10m)followingtheapproachdescribed
inFeilhauerandSchmidtlein(2009).Theanalysedlandscapeisamo-
saicofraisedbogs,fens,transitionmiresandMoliniameadows.Fora
detaileddescriptionofthedataandsitepleaserefertoFeilhaueretal.
(2014)andFeilhauer,Doktor,Schmidtlein,andSkidmore(2016).
Analyses like this require two different datasets: (1) a sample
offielddatathatisrepresentativeforthevegetationinthestudied
areaandis used togeneratethe ordinationspace;(2) imagedata
withasufficientspectralresolutiontodiscriminatethevegetation
typeswithintheordinationspaceandwithaspatialresolutionthat
isinlinewiththesamplingdesignofthefielddata(Feilhaueretal.,
2013).
FIGURE 1 Anexampleofhowtocoupleinformationon
compositionalpropertiesofthelandscapebyopticaldatatogether
withstructural(3D)propertiesbylaserscanningLiDARdata
FIGURE 2  β-diversityassessmentwithacombinationofordinationtechniquesandremotesensing.(a)Three-dimensionaldetrended
correspondenceanalysis(DCA)ordinationspaceofn=100vegetationplotssampledinraisedbogs,fens,transitionmiresandMoliniameadows
inthealpinefoothillsofSouthernGermany.Aninter-plotdistanceof4SDcorrespondstoafullspeciesturnover.(b)Mapsoftheordinationaxes
resultingfromaspatialpredictionbasedoncanopyreflectance.Eachpixelhasapredictedpositionintheordinationspacethatisindicatedbyits
colour.Thecolourschemecorrespondsto(a).Themaphasaspatialresolutionof2×2m
2
,whichisinlinewiththesampledplotsize.
(c)CumulativechangeratesalongthethreeDCAaxesina5×5pixelneighbourhood.Ahighchangerateindicatesahighbetadiversity

1790 
|
  
Methods in Ecology and Evoluon
ROCCHINI et al.
Using these data, the continuous spatial variability of the spec-
tralsignalintheimagepixelsistranslatedintoaspatiallycontinuous
measureofspeciescomposition.Theadvantagesofthisapproachare
obvious:sincethediversityanalysesareconductedinthefloristicgra-
dientspace,theresultingmeasuresresemblefieldstudiesandarethus
easiertointerpretthanspectralproxiesandclosertothepointofview
ofmanyend-users.Furthermore,theanalysisofordinationscoresin
definedpixelneighbourhoodsisnotrestrictedtoasinglespatialscale
butofferstheopportunitytoimplementassessmentsofbetadiversity
onmultiplescales.
|
ThespectralspeciesconcepthasbeenproposedbyFéretandAsner
(2014a) to map both α and β component of the biodiversity using
a unique framework. It is rooted in the convergence between two
otherconcepts,thespectralvariationhypothesis(SVH)proposedby
Palmer, Earls, Hoagland, White, and Wohlgemuth (2002), and the
plantopticaltypesproposedbyUstinandGamon(2010),sustained
bythetechnologicaladvances inthedomain of highspatialresolu-
tionimagingspectroscopy.TheSVHstatesthatthespatialvariability
in the remotely sensed signal, that is the spectral heterogeneity, is
relatedtoenvironmentalheterogeneityandcouldthereforebeused
asapowerfulproxyofspeciesdiversity.SVHhasbeentestedindif-
ferentsituations(Rocchinietal.,2010)andconclusionsshowthatthe
performanceofthisapproachisverydependentonseveralfactors,
includingtheinstrumentcharacteristics(spectral,spatialandtempo-
ralresolution), thetype ofvegetation investigated,and the metrics
derivedfromremotelysensedinformationtoestimatespectralheter-
ogeneity.Plantopticaltypesrefertothecapacityofsensorstomeas-
ure signals that aggregate information about vegetation structure,
phenology, biochemistry and physiology. Therefore, this concept is
alsotightlylinkedtotheperformancesofthesensorandfindspar-
ticularechowiththeincreasinguseofhighspatialresolutionimaging
spectroscopyfortheestimationandidentificationofmultiplevegeta-
tionproperties.
Thedetailsprovidedbyhighspatialresolutionimagingspectros-
copyaresufficient toperform analysesofplant optical traits at the
individualtreescaleinordertodifferentiatetreespecies,obtainin-
formationaboutleafchemicaltraitsandestimatetheαcomponentof
biodiversity(Asner&Martin,2008;Asner,Martin,Anderson,&Knapp,
2015;Chadwick&Asner,2016;Clark&Roberts,2012;Clark,Roberts,
&Clark,2005;Féret&Asner,2013;VaglioLaurinetal.,2014).These
resultsillustratethatspectralinformationcanberelatedtotaxonomic
orfunctionalinformationofthevegetation,whichsupportstheSVH
underthehypothesisthatthemetricsusedtocomputespectralhet-
erogeneityandagivencomponentofvegetationdiversityareprop-
erlydefined.Howevertheseapplicationsarecurrentlylimitedbythe
importantamountoffielddatarequiredtotrainregressionorclassi-
ficationmodels,whichisalsodirectlylinkedto theirlowgeneraliza-
tionabilityintimeandspace.Unsupervisedapproachesthenappear
asvaluablealternativesforthe analysisofecosystemheterogeneity
(Baldeck & Asner, 2013; Baldeck etal., 2014; Feilhauer, Faude, &
Schmidtlein,2011;Féret&Asner,2014b),asecologicalindicatorsofα
and βdiversityatlandscapescaleusuallyrequireoneorseverallevels
ofabstractionbeyondthecorrecttaxonomicidentification(Tuomisto
&Ruokolainen,2006).
Clustering(properlypre-processed)spectralinformationshouldre-
sultinpixelsfromthesamespeciesnaturallygroupingtogetherrather
thandistributing randomlyamong clusters,FéretandAsner(2014a)
proposedagroupingmethodaimingatassigninglabelstopixelsbased
on multiple clustering of spectroscopic data acquired at landscape
scale.Thesepixels,labelledwithasetoftheso-calledspectralspecies,
can then be used straightforwardly in orderto computevarious di-
versitymetricssuchasShannonindexforαdiversity,andBray-Curtis
dissimilarityforβ diversity.Thepre-processing stage is divided into
severalstages.Aftermaskingallnon-vegetatedpixels,anormalization
based on continuous removal is applied to each pixel and over the
fullspectraldomain,thenaprincipalcomponentanalysisisperformed
onthecontinuouslyremovedspectraldata.Thenormalizationreduces
effectsduetochangesinillumination,canopygeometryandotherfac-
torsunrelatedtovegetation,whileenhancingthesignalcorresponding
tovegetation.Thecomponentsincludingindividual-specificinforma-
tionarethe componentsofinterest.Theycan be identifiedaftervi-
sual inspection or automated routines,if initial data showsufficient
signaltonoiseratio.Oncealimitednumberofcomponentshavebeen
selected, k-means clustering is then applied to a certain numberof
subsets,andforeachofthesesubsets,centroidsarecomputedand
eachpixelintheimageislabelledbasedontheclosestcentroid.The
repetitionofclusteringbasedonvarioussubsetsoftheimagetendsto
minimizetheriskofassigningcentroidstoirrelevantgroupsofpixels.
Experimental results showed that the averaging of diversity indices
computedfrommultiplecentroidmapscanbeseenasananalogous
tosignalaveraging,whichconsistsinincreasingsignal tonoiseratio
byreplicatingmeasurements.Foreachrepetition,theclosestcentroid
correspondstothespectralspecies,andforeachspatialunitofagiven
size,thespectralspeciesdistributionisderivedinordertocompute
anydiversitymetricrequiringeitherinformationatthelocalscale,or
comparisonofinformationacrossspatiallydistantplots.
Theconceptsofspectralspeciesandspectralspeciesdistribution
havebeentestedsuccessfullyonalimitednumberofsituationsand
typesofecosystems(seeRocchinietal.,2016forareview,andLausch
etal., 2016 for an application to similar concepts). As an example,
FéretandAsner(2014a)showedabilitytoproperlyestimatelandscape
heterogeneityatmoderatespatialscale,uptofewdozensquarekilo-
metersovertropicalforests,basedonhighspatialresolutionimaging
spectroscopy (Figure 3). A generic parameterization of the method
showed robust performances for α diversity mapping across space
andtime,butmappingβdiversityacrosslargespatialscalesusingim-
agesacquiredduringdifferentairbornecampaignremainschallenging,
whichleadstoanunsolvedproblemwhenconsideringoperationalre-
gionalmapping.Intheperspectiveofglobalmonitoringofbiodiversity,
andgiventheunprecedentedremotesensingcapacityallowedbythe
Copernicusprogram,includingtheSentinel-2multispectralsatellites,
severalotherchallengesareforeseenandcurrentlyinvestigated.The

    
|
 1791
Methods in Ecology and Evoluon
ROCCHINI et al.
influenceofdecreasedspatialandspectralresolutionontheabilityto
properlydifferentiateecologicallymeaningfulspectralspeciesacross
landscapesandoverregionswillneedtobeinvestigated.Theapplica-
tionofthisconceptbeyondtropicalforestsandsavannaecosystems
shouldalsobeinvestigated,asitmaynotholdwhenappliedonmoder-
atelydiverseecosystemsorsystemswithindividualswhoseindividu-
alshavedimensionswellbelowtheresolvingpoweroftheinstrument.
|
TheKohonenself-organizingfeaturemap(SOFM;Kohonen,1982)is
aneuralnetworkthatmaybeusedtoundertakeunsupervisedcluster-
ingofdata.Critically,theinputtoaSOFMcanbealargemulti-variate
datasetsuchasmaybeacquiredonspeciesfromquadrat-basedfield
surveys.TheSOFMsummarizesthedatain a low, typicallytwo,di-
mensionaloutput(Figure4).Inthisoutputspace,thedataforindivid-
ualquadratsaretopologicallyordered—withsitesthataresimilarclose
togetherwhilethoseofhighlydifferentspeciescompositionaremore
distant.Because thedata sitesin the output space arearranged by
FIGURE 3 Spectralspeciescanbeidentifiedinahyper-ormultispectralimagebyspatialclusteringmethodandtheirdistributioncanbe
mapped.Suchmapscanfurtherbeusedtoapplylocal-basedheterogeneitymeasurements(α-diversity)aswellasiterativedistance-based
methodstobuildβ-diversitymaps.ReproducedfromFéretandAsner(2014a)
FIGURE 4 Aself-organizingfeaturemapcanbebuiltstarting
fromaninputlayer,e.g.thepresenceorabsenceofatreespeciesor
ofapeculiarspectralvalue)whichisconnectedtoeveryunitinthe
outputlayerbyaweightedconnection.Theself-organizingfeature
mapusesunsupervisedlearningtomapthelocationoffieldsites
withintheoutputspaceonthebasisoftheirrelativesimilarityin
speciesorspectralcomposition.RedrawnfromFoodyandCutler
(2003)
Output layer
Input units

Citations
More filters
Journal ArticleDOI

Scaling-up biodiversity-ecosystem functioning research.

TL;DR: Directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks are suggested and new research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
Journal ArticleDOI

Remote sensing of terrestrial plant biodiversity

TL;DR: A review of the history of remote sensing approaches in biodiversity estimation, summarizing the pros and cons of different methods, illustrate successes and major gaps of remote-sensing of biodiversity, and identify promising future directions as mentioned in this paper.
Journal ArticleDOI

Discovering floristic and geoecological gradients across Amazonia

TL;DR: In this article, the authors used field plot data to assess main ecological gradients across Amazonia and to relate floristic ordination axes to soil base cation concentration, Climatologies at High Resolution for the Earth's Land Surface Areas (CHELSA) climatic variables and reflectance values from a basinwide Landsat image composite with generalized linear models.
References
More filters
Journal ArticleDOI

Vegetation of the Siskiyou Mountains, Oregon and California

TL;DR: Forest Vegetation of Higher Elevations on Diorite and the Two-Phase Ef fect .......... .............. . 299 Forest Vegetation in Transects.
Journal ArticleDOI

iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers)

TL;DR: In this article, the authors present an R package iNEXT (iNterpolation/EXTrapolation) which provides simple functions to compute and plot the seamless rarefaction and extrapolation sampling curves for the three most widely used members of the Hill number family.
Journal ArticleDOI

Analyzing beta diversity: partitioning the spatial variation of community composition data

TL;DR: In this article, the authors compare two statistical methods, namely, canonical ordination and variation partitioning on distance matrices (Mantel approach), to test the origin and maintenance of community diversity among sites.
Journal ArticleDOI

Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment

TL;DR: Generalized dissimilarity modeling (GDM) as discussed by the authors is a statistical technique for analyzing and predicting spatial patterns of turnover in community composition (beta diversity) across large regions, which is an extension of matrix regression, designed specifically to accommodate two types of nonlinearity commonly encountered in large-scaled ecological data sets: (1) the curvilinear relationship between increasing ecological distance, and observed compositional dissimilarities, between sites; and (2) the variation in the rate of compositional turnover at different positions along environmental gradients.
Journal ArticleDOI

Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales

TL;DR: In this paper, the authors investigated the utility of high spectral and spatial resolution imagery for the automated species-level classification of individual tree crowns (ITCs) in a tropical rain forest (TRF).
Related Papers (5)
Frequently Asked Questions (16)
Q1. What are the contributions in "Measuring β-diversity by remote sensing: a challenge for biodiversity monitoring" ?

In this paper, a negative exponential dispersal kernel is adopted to mathematically describe the occupancy of new sites by species, as follows: where dik = distance between two locations i and k and a is a parameter regulating the dispersal from localized areas ( low values of a ) to widespread ones ( high value of a ). 

Such measures might be used to regress species diversity against remotely sensed heterogeneity, based on new regression techniques which maximize the possibility of predicting the zones in a study area, or at larger spatial scales, of peculiar conservation value. As an example Rocchini et al. ( 2013 ) introduced the possibility of applying generalized entropy theory to satellite images with one single formula representing a continuum of diversity measures changing one parameter. As previously stated, the suggested methods for β-diversity estimation from remote sensing are mainly based on distances, but they could be effectively translated to relative abundance-based methods. 

The self-organizing feature map uses unsupervised learning to map the location of field sites within the output space on the basis of their relative similarity in species or spectral composition. 

Remote sensing data and biodiversity data in the field can be coupled by sparse canonical correlation analysis (SCCA) to produce canonical components and a community dissimilarity matrix, which are then used to build a generalized dissimilarity model (GDM) to finally derive a β-diversity map0 0SCCAGDMGDMRemote sensing data Biodiversity dataCanonical components Community dissimilarityBeta-diversity mapland cover types, one-way ANOVA tests were performed. 

A negative exponential dispersal kernel is usually adopted to mathematically describe the occupancy of new sites by species, as follows:where dik = distance between two locations i and k and a is a parameter regulating the dispersal from localized areas (low values of a) to widespread ones (high values of a; Meentemeyer, Anacker, Mark, & Rizzo, 2008). 

The advantages of this approach are obvious: since the diversity analyses are conducted in the floristic gradient space, the resulting measures resemble field studies and are thus easier to interpret than spectral proxies and closer to the point of view of many end-users. 

In the perspective of global monitoring of biodiversity, and given the unprecedented remote sensing capacity allowed by the Copernicus program, including the Sentinel-2 multispectral satellites, several other challenges are foreseen and currently investigated. 

The SCCA is a form of penalized canonical correlation analysis based on the L1 (lasso) penalty function, and is thus designed to deal with high-dimensional data. 

This is done through a linear combination of monotonic I-spline basisfunctions, under the assumption that increasing environmental dissimilarity (e.g., along a gradient) can only result in increasing compositional dissimilarity. 

As previously stated, the suggested methods for β-diversity estimation from remote sensing are mainly based on distances, but they could be effectively translated to relative abundance-based methods. 

Rao's Q is capable of discriminating among the ecological diversity of matrices (3) and (4), turning out to be 4.59 and 90.70, respectively. 

Such maps can further be used to apply local-based heterogeneity measurements (α-diversity) as well as iterative distance-based methods to build β-diversity maps. 

Extending on previous work, in this manuscript, the authors propose novel techniques to measure β-diversity from airborne or satellite remote sensing, mainly based on: (1) multivariate statistical analysis, (2) the spectral species concept, (3) self-organizingBiodiversity cannot be fully investigated without considering the spatial component of its variation. 

Such measures might be used to regress species diversity against remotely sensed heterogeneity, based on new regression techniques which maximize the possibility of predicting the zones in a study area, or at larger spatial scales, of peculiar conservation value. 

As an example Rocchini et al. (2013) introduced the possibility of applying generalized entropy theory to satellite images with one single formula representing a continuum of diversity measures changing one parameter. 

Experimental results showed that the averaging of diversity indices computed from multiple centroid maps can be seen as an analogous to signal averaging, which consists in increasing signal to noise ratio by replicating measurements.