scispace - formally typeset
Journal ArticleDOI

Mechanical properties of suspended graphene sheets

TLDR
In this article, the Young's modulus of stacks of graphene sheets suspended over photolithographically defined trenches in silicon dioxide was measured using an atomic force microscope, with measured spring constants scaling as expected with the dimensions of the suspended section, ranging from 1to5N∕m.
Abstract
Using an atomic force microscope, we measured effective spring constants of stacks of graphene sheets (less than 5) suspended over photolithographically defined trenches in silicon dioxide. Measurements were made on layered graphene sheets of thicknesses between 2 and 8nm, with measured spring constants scaling as expected with the dimensions of the suspended section, ranging from 1to5N∕m. When our data are fitted to a model for doubly clamped beams under tension, we extract a Young’s modulus of 0.5TPa, compared to 1TPa for bulk graphite along the basal plane, and tensions on the order of 10−7N.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanics of free-standing inorganic and molecular 2D materials

TL;DR: This review summarizes recent progress in the mechanical characterization of free-standing 2D materials, such as graphene, hexagonal boron nitride (hBN), transition metal-dichalcogenides, MXenes, black phosphor, carbon nanomembranes (CNMs), 2D polymers, 2D metalorganic frameworks (MOFs) and covalent organic frameworks (COFs).
Journal ArticleDOI

First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges

TL;DR: In this paper, a review of state-of-the-art first-principle thermal modeling methods and notable achievements by these methods over the last decade is provided, including two-dimensional materials, superhard materials, metamaterials, and polymers.
Journal ArticleDOI

Elastic properties of graphene suspended on a polymer substrate by e-beam exposure

TL;DR: In this article, a method for fabricating multiple free-standing structures on the same sheet of graphene is demonstrated, where mechanically exfoliated mono-and bilayer graphene sheets are sandwiched between two layers of polymethyl- methacrylate.
Journal ArticleDOI

Temperature Dependent Electrical Transport Properties of High Carrier Mobility Reduced Graphene Oxide Thin Film Devices

TL;DR: In this paper, temperature dependent electrical transport properties of high mobility reduced graphene oxide (RGO) thin films fabricated by pulse laser deposition were reported. But the authors focused on the high mobility of the RGO thin films.
References
More filters
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Related Papers (5)