scispace - formally typeset
Open AccessJournal ArticleDOI

Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer

TLDR
Treatment efficacy was associated with a higher number of mutations in the tumors, and a tumor-specific T cell response paralleled tumor regression in one patient, suggesting that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.
Abstract
Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.

read more

Citations
More filters
Journal ArticleDOI

Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden

TL;DR: Measurements of TMB from comprehensive genomic profiling are strongly reflective of measurements from whole exome sequencing and model that below 0.5 Mb the variance in measurement increases significantly, demonstrating that many disease types have a substantial portion of patients with high TMB who might benefit from immunotherapy.
Journal ArticleDOI

Genomic and transcriptomic features of response to anti-pd-1 therapy in metastatic melanoma

TL;DR: It is found that overall high mutational loads associate with improved survival, and tumors from responding patients are enriched for mutations in the DNA repair gene BRCA2, suggesting that attenuating the biological processes that underlie IPRES may improve anti-PD-1 response in melanoma and other cancer types.
Journal ArticleDOI

Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade

TL;DR: The immunophenoscore was a superior predictor of response to anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1) antibodies in two independent validation cohorts and may help inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
References
More filters
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Journal ArticleDOI

A method and server for predicting damaging missense mutations.

TL;DR: A new method and the corresponding software tool, PolyPhen-2, which is different from the early tool polyPhen1 in the set of predictive features, alignment pipeline, and the method of classification is presented and performance, as presented by its receiver operating characteristic curves, was consistently superior.
Journal ArticleDOI

Integrative genomics viewer

TL;DR: In this article, the authors present an approach for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Related Papers (5)