scispace - formally typeset
Journal ArticleDOI

Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles

TLDR
The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces and lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.
Abstract
A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2–15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity–selectivity–size relations provide novel insights in the CO2 electroreduction r...

read more

Citations
More filters
Journal ArticleDOI

Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Journal ArticleDOI

Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

TL;DR: Modular optimization of covalent organic frameworks (COFs) is reported, in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO.
Journal ArticleDOI

Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide

TL;DR: This Perspective highlights several heterogeneous and molecular electrocatalysts for the reduction of CO2 and discusses the reaction pathways through which they form various products, including copper, a unique catalyst as it yields hydrocarbon products with acceptable efficiencies.
Journal ArticleDOI

Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels.

TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
References
More filters
Journal ArticleDOI

Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs

TL;DR: In this article, the authors quantified the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state of the art platinum electrocatalysts.
Journal ArticleDOI

Size- and support-dependency in the catalysis of gold

TL;DR: In this article, the adsorption properties and reactivities of gold are summarized in terms of their size dependency from bulk to fine particles, clusters and atoms, and the catalytic performances of gold markedly depend on dispersion, supports, and preparation methods.
Journal ArticleDOI

Trends in the exchange current for hydrogen evolution

TL;DR: A density functional theory database of hydrogen chemisorption energies on close packed surfaces of a number of transition andnoble metals is presented in this article, where the bond energies are used to understand the trends in the exchange current for hydrogen evolution.
Journal ArticleDOI

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

TL;DR: Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels as mentioned in this paper, which may lead to new energy sources.
Journal ArticleDOI

Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts

TL;DR: It is shown how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries.
Related Papers (5)