scispace - formally typeset
Open AccessJournal ArticleDOI

Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans

TLDR
A population genetic analysis of Drosophila simulans is presented based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba, to suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophile genome.
Abstract
The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

DnaSP v5

TL;DR: Version 5 implements a number of new features and analytical methods allowing extensive DNA polymorphism analyses on large datasets, including visualizing sliding window results integrated with available genome annotations in the UCSC browser.
Journal ArticleDOI

Evolution of genes and genomes on the Drosophila phylogeny.

Andrew G. Clark, +429 more
- 08 Nov 2007 - 
TL;DR: These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.
Journal ArticleDOI

Genetic Data Analysis

TL;DR: The objectives of BIOS 781 are to present basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination, and methods for genome-wide association and stratification control.
Journal ArticleDOI

Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

TL;DR: Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations and identify several novel regions showing parallel differentiation across independent populations.
References
More filters
Book

An introduction to the bootstrap

TL;DR: This article presents bootstrap methods for estimation, using simple arguments, with Minitab macros for implementing these methods, as well as some examples of how these methods could be used for estimation purposes.
Book

Molecular Evolutionary Genetics

Masatoshi Nei
TL;DR: Recent developments of statistical methods in molecular phylogenetics are reviewed and it is shown that the mathematical foundations of these methods are not well established, but computer simulations and empirical data indicate that currently used methods produce reasonably good phylogenetic trees when a sufficiently large number of nucleotides or amino acids are used.
Journal ArticleDOI

BLAT—The BLAST-Like Alignment Tool

TL;DR: How BLAT was optimized is described, which is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.
Journal ArticleDOI

Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.

TL;DR: A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed, and this dating may pose a problem for the widely believed hypothesis that the bipedal creatureAustralopithecus afarensis, which lived some 3.7 million years ago, was ancestral to man and evolved after the human-ape splitting.
Related Papers (5)

Evolution of genes and genomes on the Drosophila phylogeny.

Andrew G. Clark, +429 more
- 08 Nov 2007 -