scispace - formally typeset
Open AccessJournal ArticleDOI

R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling

Reads0
Chats0
TLDR
It is demonstrated that LGR4 and LGR5 bind the R-spondins with high affinity and mediate the potentiation of Wnt/β-catenin signaling by enhancing Wnt-induced LRP6 phosphorylation, indicating a unique mechanism of action.
Abstract
The Wnt/β-catenin signaling system plays essential roles in embryonic development and in the self-renewal and maintenance of adult stem cells. R-spondins (RSPOs) are a group of secreted proteins that enhance Wnt/β-catenin signaling and have pleiotropic functions in development and stem cell growth. LGR5, an orphan receptor of the G protein-coupled receptor (GPCR) superfamily, is specifically expressed in stem cells of the intestinal crypt and hair follicle. Knockout of LGR5 in the mouse results in neonatal lethality. LGR4, a receptor closely related to LGR5, also has essential roles in development, as its knockout leads to reduced viability and retarded growth. Overexpression of both receptors has been reported in several types of cancer. Here we demonstrate that LGR4 and LGR5 bind the R-spondins with high affinity and mediate the potentiation of Wnt/β-catenin signaling by enhancing Wnt-induced LRP6 phosphorylation. Interestingly, neither receptor is coupled to heterotrimeric G proteins or to β-arrestin when stimulated by the R-spondins, indicating a unique mechanism of action. The findings provide a basis for stem cell-specific effects of Wnt/β-catenin signaling and for the broad range of functions LGR4, LGR5, and the R-spondins have in normal and malignant growth.

read more

Citations
More filters
Journal ArticleDOI

Wnt/β-catenin signaling and disease.

TL;DR: An update of the core Wnt/β-catenin signaling pathway is provided, how its various components contribute to disease, and outstanding questions to be addressed in the future are discussed.
Journal ArticleDOI

Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities.

TL;DR: The core Wnt/β-catenin signaling pathway is described, how it controls stem cells, and contributes to disease, and strategies for Wnt-based therapies are discussed.
Journal ArticleDOI

WNT signaling in bone homeostasis and disease: from human mutations to treatments

TL;DR: Current understanding of the mechanisms by which WNT signalng regulates bone homeostasis is reviewed, finding the pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture.
Journal ArticleDOI

Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients

TL;DR: The CRISPR/Cas9 genome editing system is used to correct the CFTR locus by homologous recombination in cultured intestinal stem cells of CF patients and the corrected allele is expressed and fully functional as measured in clonally expanded organoids.
References
More filters
Journal ArticleDOI

Identification of stem cells in small intestine and colon by marker gene Lgr5

TL;DR: The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers, suggesting that it represents the stem cell of the small intestine and colon.
Journal ArticleDOI

Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts

TL;DR: It is concluded that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell, in colon crypts, and co-culturing of sorted stem cells with Paneth cells markedly improves organoid formation.
Journal ArticleDOI

Transduction of receptor signals by beta-arrestins.

TL;DR: Another previously unappreciated strategy used by the receptors to regulate intracellular signaling pathways is indicated, which regulates aspects of cell motility, chemotaxis, apoptosis, and likely other cellular functions through a rapidly expanding list of signaling pathways.
Journal ArticleDOI

Zebrafish Prickle, a Modulator of Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements

TL;DR: The results support the idea that a vertebrate PCP pathway regulates gastrulation movements and suggest that there is overlap between the PCP and Wnt/calcium pathways.
Related Papers (5)