scispace - formally typeset
Open AccessJournal ArticleDOI

Tractography patterns of subthalamic nucleus deep brain stimulation

TLDR
The connectivity patterns observed in this study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation.
Abstract
Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation. Our method can be further developed to reliably identify effective deep brain stimulation contacts and aid in the programming process.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

White matter tractography for neurosurgical planning: A topography-based review of the current state of the art.

TL;DR: It is found that tractography is a valuable tool in variable situations in modern neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
References
More filters
Journal ArticleDOI

AFNI: software for analysis and visualization of functional magnetic resonance neuroimages

TL;DR: A package of computer programs for analysis and visualization of three-dimensional human brain functional magnetic resonance imaging (FMRI) results is described and techniques for automatically generating transformed functional data sets from manually labeled anatomical data sets are described.
Journal ArticleDOI

Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.

TL;DR: The pathological findings in 100 patients diagnosed prospectively by a group of consultant neurologists as having idiopathic Parkinson's disease are reported, and these observations call into question current concepts of Parkinson's Disease as a single distinct morbid entity.
Journal ArticleDOI

Systematic review of levodopa dose equivalency reporting in Parkinson's disease

TL;DR: A systematic review of studies reporting LEDs yielded a standardized LED for each drug, providing a useful tool to express dose intensity of different antiparkinsonian drug regimens on a single scale.
Journal ArticleDOI

Toward a quantitative assessment of diffusion anisotropy

TL;DR: New indices calculated from the entire diffusion tensor are rotationally invariant (RI) and show that anisotropy is highly variable in different white matter regions depending on the degree of coherence of fiber tract directions.
Related Papers (5)