scispace - formally typeset
Search or ask a question

Showing papers on "Aldehyde dehydrogenase published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors provide a synopsis of a common structure-function relationship to bridge the gap between the highly studied human ALDHs and lesser so prokaryotic models.
Abstract: Aldehyde dehydrogenases engage in many cellular functions, however their dysfunction resulting in accumulation of their substrates can be cytotoxic. ALDHs are responsible for the NAD(P)-dependent oxidation of aldehydes to carboxylic acids, participating in detoxification, biosynthesis, antioxidant and regulatory functions. Severe diseases, including alcohol intolerance, cancer, cardiovascular and neurological diseases, were linked to dysfunctional ALDH enzymes, relating back to key enzyme structure. An in-depth understanding of the ALDH structure-function relationship and mechanism of action is key to the understanding of associated diseases. Principal structural features 1) cofactor binding domain, 2) active site and 3) oligomerization mechanism proved critical in maintaining ALDH normal activity. Emerging research based on the combination of structural, functional and biophysical studies of bacterial and eukaryotic ALDHs contributed to the appreciation of diversity within the superfamily. Herewith, we discuss these studies and provide our interpretation for a global understanding of ALDH structure and its purpose-including correct function and role in disease. Our analysis provides a synopsis of a common structure-function relationship to bridge the gap between the highly studied human ALDHs and lesser so prokaryotic models.

51 citations


Journal ArticleDOI
TL;DR: Ozanimod was extensively metabolized, with 14 metabolites identified, including two major active metabolites (CC112273 and CC1084037) and one major inactive metabolite (RP101124) in circulation as discussed by the authors.
Abstract: Ozanimod is approved for the treatment of relapsing forms of multiple sclerosis. Absorption, metabolism, and excretion of ozanimod were investigated after a single oral dose of 1.0 mg [14C]ozanimod hydrochloride to six healthy subjects. In vitro experiments were conducted to understand the metabolic pathways and enzymes involved in the metabolism of ozanimod and its active metabolites. The total mean recovery of the administered radioactivity was ∼63%, with ∼26% and ∼37% recovered from urine and feces, respectively. Based on exposure, the major circulating components were active metabolite CC112273 and inactive metabolite RP101124, which together accounted for 50% of the circulating total radioactivity exposure, whereas ozanimod accounted for 6.7% of the total radioactive exposure. Ozanimod was extensively metabolized, with 14 metabolites identified, including two major active metabolites (CC112273 and CC1084037) and one major inactive metabolite (RP101124) in circulation. Ozanimod is metabolized by three primary pathways, including aldehyde dehydrogenase and alcohol dehydrogenase, cytochrome P450 isoforms 3A4 and 1A1, and reductive metabolism by gut microflora. The primary metabolite RP101075 is further metabolized to form major active metabolite CC112273 by monoamine oxidase B, which further undergoes reduction by carbonyl reductases to form CC1084037 or CYP2C8-mediated oxidation to form RP101509. CC1084037 is oxidized rapidly to form CC112273 by aldo-keto reductase 1C1/1C2 and/or 3β- and 11β-hydroxysteroid dehydrogenase, and this reversible oxidoreduction between two active metabolites favors CC112273. The ozanimod example illustrates the need for conducting timely radiolabeled human absorption, distribution, metabolism, and excretion studies for characterization of disproportionate metabolites and assessment of exposure coverage during drug development. SIGNIFICANCE STATEMENT: Absorption, metabolism, and excretion of ozanimod were characterized in humans, and the enzymes involved in complex metabolism were elucidated. Disproportionate metabolites were identified, and the activity of these metabolites was determined.

31 citations


Journal ArticleDOI
TL;DR: In this paper, through adaptive laboratory evolution on three representative aromatic aldehyde inhibitors, evolved strains of Y. lipolytica XYL+ were obtained, which provided insights to the aromatic acid degradation in Y.lipolyticas and a reliable basis for the development of inhibitor tolerant strains.

22 citations


Journal ArticleDOI
TL;DR: In this paper, the role of ALDH in solid tumours, especially ALDH1A1 and ALDH 1A3 isoforms, regarding the molecular mechanism of their transcription and regulation, and their crosstalk with main molecular pathways resulting in the excessive proliferation, chemoresistance, stem cells properties and invasiveness.

20 citations


Journal ArticleDOI
31 Aug 2021
TL;DR: In this paper, the protective effects of lactic acid bacteria (LAB) strains, including Levilactobacillus brevis, Limosa reuteri, and Limosa fermentum, were evaluated in ethanol-induced HepG2 cells.
Abstract: Alcoholic liver fatty disease (ALFD) is caused by excessive and chronic alcohol consumption. Alcohol consumption causes an imbalance in the intestinal microflora, leading to liver disease induced by the excessive release of endotoxins into the hepatic portal vein. Therefore, research on the intestinal microflora to identify treatments for ALFD is increasing. In this study, the protective effects of lactic acid bacteria (LAB) strains, including Levilactobacillus brevis, Limosilactobacillus reuteri, and Limosilactobacillus fermentum, were evaluated in ethanol-induced HepG2 cells. Among the evaluated LAB, nine strains increased aldehyde dehydrogenase (ALDH) levels and downregulated lipid peroxidation and liver transferase in the ethanol-induced HepG2 cells. Moreover, L. brevis MG5280 and MG5311, L. reuteri MG5458, and L. fermentum MG4237 and MG4294 protected against ethanol-induced HepG2 cell damage by regulating CYP2E1, antioxidant enzymes (SOD, CAT, and GPX), lipid synthesis factors (SREBP1C and FAS), and lipid oxidation factors (PPARα, ACO, and CPT-1). Moreover, five LAB were confirmed to be safe probiotics based on antibiotic susceptibility and hemolysis assays; their stability and adhesion ability in the gastrointestinal tract were also established. In conclusion, L. brevis MG5280 and MG5311, L. reuteri MG5458, and L. fermentum MG4237 and MG4294 may be useful as new probiotic candidates for ALFD prevention.

18 citations


Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors found that the cholesterol levels in the serum and liver of ALDH2 knockout and knock-in mice are significantly increased, consistent with the increase of intermediates in the cholesterol biosynthetic pathways.
Abstract: HMG-CoA reductase (HMGCR) is the rate-limiting enzyme in cholesterol biosynthesis and the target for cholesterol-lowering therapy. Acetaldehyde dehydrogenase 2 (ALDH2) is primarily responsible for detoxifying ethanol-derived acetaldehyde and endogenous lipid aldehydes derived from lipid peroxidation. Epidemiological and Genome Wide Association Studies (GWAS) have linked an inactive ALDH2 rs671 variant, responsible for alcohol flush in nearly 8% world population and 40% of Asians, with cholesterol levels and higher risk of cardiovascular disease (CVD) but the underlying mechanism remains elusive. Here we find that the cholesterol levels in the serum and liver of ALDH2 knockout (AKO) and ALDH2 rs671 knock-in (AKI) mice are significantly increased, consistent with the increase of intermediates in the cholesterol biosynthetic pathways. Mechanistically, mitochondrial ALDH2 translocates to the endoplasmic reticulum to promote the formation of GP78/Insig1/HMGCR complex to increase HMGCR degradation through ubiquitination. Conversely, ALDH2 mutant or ALDH2 deficiency in AKI or AKO mice stabilizes HMGCR, resulting in enhanced cholesterol synthesis, which can be reversed by Lovastatin. Moreover, ALDH2-regulated cholesterol synthesis is linked to the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs). Together, our study has identified that ALDH2 is a novel regulator of cholesterol synthesis, which may play an important role in CVD.

18 citations


Journal ArticleDOI
TL;DR: In this article, the expression changes of each alcohol dehydrogenase (ADH) and aldehyde dehydrogenases (ALDH) in the liver samples of alcoholic hepatitis (AH) patients, and predicted the miRNAs targeting the dysregulated alcohol-metabolizing genes by a systematic in silico analysis.

17 citations


Journal ArticleDOI
24 Sep 2021
TL;DR: A comprehensive review of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options are provided in this article.
Abstract: The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.

14 citations


Journal ArticleDOI
TL;DR: In this paper, the role of ALDH2 in acute kidney injury (AKI) remains poorly defined and is therefore the subject of the present study using various cellular and organismal sources.
Abstract: The mitochondrial enzyme acetaldehyde dehydrogenase 2 (ALDH2) catalyzes the detoxification of acetaldehyde and endogenous lipid aldehydes. Approximately 40% of East Asians, accounting for 8% of the human population, carry the E504K mutation in ALDH2 that leads to accumulation of toxic reactive aldehydes and increases the risk for cardiovascular disease (CVD), cancer and Alzheimer's, among other diseases. However, the role of ALDH2 in acute kidney injury (AKI) remains poorly defined and is therefore the subject of the present study using various cellular and organismal sources. In murine models in which AKI was induced by either the contrast agent Iohexol or renal ischemia/reperfusion, knockout and activation/overexpression of ALDH2 was associated with increased and decreased renal injury, respectively. In murine renal tubular epithelial cells (RTECs), ALDH2 upregulated Beclin-1 expression, promoted autophagy activation and eliminated reactive oxygen species (ROS). In vivo and in vitro, both 3-MA and Beclin-1 siRNAs inhibited autophagy and abolished ALDH2 mediated renoprotection. In mice with Iohexol induced AKI, ALDH2 knockdown in RTECs using AAV-shRNA impaired autophagy activation and aggravated renal injury. In human renal proximal tubular epithelial HK-2 cells exposed to Iohexol, ALDH2 activation potentiated autophagy and attenuated apoptosis. In mice with AKI induced by renal ischemia ischemia/reperfusion, ALDH2 overexpression or pretreatment regulated autophagy mitigating apoptosis of RTECs and renal injury. Our data collectively substantiate a critical role of ALDH2 in AKI via autophagy activation involving the Beclin-1 pathway.

14 citations


Journal ArticleDOI
TL;DR: Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH to attenuate the formation of 4-HNE protein adducts and ROS in several disease models as discussed by the authors.
Abstract: Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42 °C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.

13 citations


Journal ArticleDOI
19 Jan 2021-Cancers
TL;DR: In this article, a new selective ALDH1A3 inhibitor derived from an already published ALDH non-selective inhibitor with cytotoxic activity on glioblastoma and colorectal cancer cells was presented.
Abstract: Aldehyde dehydrogenase 1A3 (ALDH1A3) belongs to an enzymatic superfamily composed by 19 different isoforms, with a scavenger role, involved in the oxidation of a plethora of aldehydes to the respective carboxylic acids, through a NAD+-dependent reaction. Previous clinical studies highlighted the high expression of ALDH1A3 in cancer stem cells (CSCs) correlated to a higher risk of cancer relapses, chemoresistance and a poor clinical outcome. We report on the structural, biochemical, and cellular characterization of NR6, a new selective ALDH1A3 inhibitor derived from an already published ALDH non-selective inhibitor with cytotoxic activity on glioblastoma and colorectal cancer cells. Crystal structure, through X-Ray analysis, showed that NR6 binds a non-conserved tyrosine residue of ALDH1A3 which drives the selectivity towards this isoform, as supported by computational binding simulations. Moreover, NR6 shows anti-metastatic activity in wound healing and invasion assays and induces the downregulation of cancer stem cell markers. Overall, our work confirms the role of ALDH1A3 as an important target in glioblastoma and colorectal cells and propose NR6 as a promising molecule for future preclinical studies.

Journal ArticleDOI
TL;DR: In this article, the authors used immunofluorescence to directly assess levels of the aldehyde 4-hydroxynonenal and comet assays to evaluate DNA double strand breaks.
Abstract: Rationale: Aldehyde dehydrogenase (ALDH) enzymes are often upregulated in cancer cells and associated with therapeutic resistance ALDH enzymes protect cells by metabolizing toxic aldehydes which can induce DNA double stand breaks (DSB) We recently identified a novel ALDH1A family inhibitor (ALDHi), 673A We hypothesized that 673A, via inhibition of ALDH1A family members, could induce intracellular accumulation of genotoxic aldehydes to cause DSB and that ALDHi could synergize with inhibitors of the ATM and ATR, proteins which direct DSB repair Methods: We used immunofluorescence to directly assess levels of the aldehyde 4-hydroxynonenal and comet assays to evaluate DSB Western blot was used to evaluate activation of the DNA damage response pathways Cell counts were performed in the presence of 673A and additional aldehydes or aldehyde scavengers ALDH inhibition results were confirmed using ALDH1A3 CRISPR knockout Synergy between 673A and ATM or ATR inhibitors was evaluated using the Chou-Talalay method and confirmed in vivo using cell line xenograft tumor studies Results: The ALDHi 673A cellular accumulation of toxic aldehydes which induce DNA double strand breaks This is exacerbated by addition of exogenous aldehydes such as vitamin-A (retinaldehyde) and ameliorated by aldehyde scavengers such as metformin and hydralazine Importantly, ALDH1A3 knockout cells demonstrated increased sensitivity to ATM/ATR inhibitors And, ALDHi synergized with inhibitors of ATM and ATR, master regulators of the DSB DNA damage response, both in vitro and in vivo This synergy was evident in homologous recombination (HR) proficient cell lines Conclusions: ALDHi can be used to induce DNA DSB in cancer cells and synergize with inhibitors the ATM/ATR pathway Our data suggest a novel therapeutic approach to target HR proficient ovarian cancer cells

Journal ArticleDOI
TL;DR: In this paper, omeprazole activation of ALDH1A1 protected Escherichia coli cells overexpresing this enzyme, from oxidative stress generated by H2 O2.
Abstract: Under physiological conditions cells produce low basal levels of reactive oxygen species (ROS); however, in pathologic conditions ROS production increases dramatically, generating high concentrations of toxic unsaturated aldehydes. Aldehyde dehydrogenases (ALDHs) are responsible for detoxification of these aldehydes protecting the cell.Due to the physiological relevance of these enzymes, it is important to design strategies to modulate their activity. It was previously reported that omeprazole activation of ALDH1A1 protected Escherichia coli cells overexpresing this enzyme, from oxidative stress generated by H2 O2 . In this work, omeprazole cell protection potential was evaluated in eukaryotic cells. AS-30D cell or hepatocytes suspensions were subjected to a treatment with omeprazole and exposure to light, (that is required to activate omeprazole in the active site of ALDH) and then exposed to H2 O2 . Cells showed viability similar to control cells, total activity of ALDH was preserved, while cell levels of lipid aldehydes and oxidative stress markers were maintained low. Cell protection by omeprazole was avoided by inhibition of ALDHs with disulfiram, revealing the key role of these enzymes in the protection. Additionally, omeprazole also preserved ALDH2 (mitochondrial isoform) activity, diminishing lipid aldehydes levels and oxidative stress in this organelle, protecting mitochondrial respiration and transmembrane potential formation capacity, from the stress generated by H2 O2 . These results highlight the important role of ALDHs as part of the antioxidant system of the cell, since if the activity of these enzymes decreases under stress conditions, the viability of the cell is compromised.

Journal ArticleDOI
TL;DR: In this article, the authors showed that engineering of oxidative stress defense pathways is an effective strategy for promoting cell robustness, lipid yield, and DHA production in Schizochytrium sp.
Abstract: Oxidation and peroxidation of lipids in microorganisms result in increased levels of intracellular reactive oxygen species (ROS) and reactive aldehydes, and consequent reduction of cell growth and lipid accumulation. To reduce oxygen-mediated cell damage and increase lipid and docosahexaenoic acid (DHA) production in Schizochytrium sp., we strengthened the oxidative stress defense pathways. Overexpression of the enzymes thioredoxin reductase (TRXR), aldehyde dehydrogenase (ALDH), glutathione peroxidase (GPO), and glucose-6-phosphate dehydrogenase (ZWF) strongly promoted cell growth, lipid yield, and DHA production. Coexpression of ZWF, ALDH, GPO, and TRXR enhanced ROS-scavenging ability. Highest values of dry cell weight, lipid yield, and DHA production (50.5 g/L, 33.1 g/L, and 13.3 g/L, respectively) were attained in engineered strain OaldH-gpo-trxR by shake flask fed-batch culture; these were increases of 18.5%, 80.9%, and 114.5% relative to WT values. Our findings demonstrate that engineering of oxidative stress defense pathways is an effective strategy for promoting cell robustness, lipid yield, and DHA production in Schizochytrium.


Journal ArticleDOI
TL;DR: A randomized, double-blind, placebo-controlled clinical trial was designed to study the effects of Lactobacillus and Bifidobacterium probiotic mixture in humans and assessed their effects on alcohol and acetaldehyde metabolism as mentioned in this paper.
Abstract: Excessive alcohol consumption is one of the most significant causes of morbidity and mortality worldwide. Alcohol is oxidized to toxic and carcinogenic acetaldehyde by alcohol dehydrogenase (ADH) and further oxidized to a non-toxic acetate by aldehyde dehydrogenase (ALDH). There are two major ALDH isoforms, cytosolic and mitochondrial, encoded by ALDH1 and ALDH2 genes, respectively. The ALDH2 polymorphism is associated with flushing response to alcohol use. Emerging evidence shows that Lactobacillus and Bifidobacterium species encode alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) mediate alcohol and acetaldehyde metabolism, respectively. A randomized, double-blind, placebo-controlled crossover clinical trial was designed to study the effects of Lactobacillus and Bifidobacterium probiotic mixture in humans and assessed their effects on alcohol and acetaldehyde metabolism. Here, twenty-seven wild types (ALDH2*1/*1) and the same number of heterozygotes (ALDH2*2/*1) were recruited for the study. The enrolled participants were randomly divided into either the probiotic (Duolac ProAP4) or the placebo group. Each group received a probiotic or placebo capsule for 15 days with subsequent crossover. Primary outcomes were measurement of alcohol and acetaldehyde in the blood after the alcohol intake. Blood levels of alcohol and acetaldehyde were significantly downregulated by probiotic supplementation in subjects with ALDH2*2/*1 genotype, but not in those with ALDH2*1/*1 genotype. However, there were no marked improvements in hangover score parameters between test and placebo groups. No clinically significant changes were observed in safety parameters. These results suggest that Duolac ProAP4 has a potential to downregulate the alcohol and acetaldehyde concentrations, and their effects depend on the presence or absence of polymorphism on the ALDH2 gene.

Journal ArticleDOI
TL;DR: Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, detoxifies reactive aldehydes such as 4−hydroxy−2−nonenal (4HNE) as discussed by the authors.
Abstract: Background Aldehyde dehydrogenase‐2 (ALDH2), a mitochondrial enzyme, detoxifies reactive aldehydes such as 4‐hydroxy‐2‐nonenal (4HNE). A highly prevalent E487K mutation in ALDH2 (ALDH2*2) in East A...

Journal ArticleDOI
TL;DR: In this paper, the effects of disulfiram and glycyrrhizic acid on the proliferation of chondrocytes in osteoarthritis were investigated.
Abstract: Osteoarthritis (OA) is a kind of systemic musculoskeletal disorder and a most important factor for causing disability and physical painfulness Nevertheless, due to the fact that OA can be triggered by multiple etiological factors, this disease is hard to be cured Therefore, it is of great necessity for us to find novel targets or drugs for OA treatment The chondrocytes were treated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to induce pyroptosis in OA The cell proliferation was detected by Cell Counting Kit-8 assay (CCK-8 assay) Enzyme-linked immunosorbent assay (ELISA) was used for the detection of pyroptosis-related inflammatory factors Then, the antagonists for gasdermin D (GSDMD) (disulfiram) and high mobility group box 1 (HMGB1) (glycyrrhizic acid) were used to treat the cell model to observe the effects of disulfiram and glycyrrhizic acid on the proliferation of chondrocytes in OA The protein levels of pyroptosis-related inflammatory factors were measured by western blot, and the levels of aldehyde dehydrogenase (ALDH) and reactive oxygen species (ROS) were measured by corresponding commercial kits After chondrocytes were induced by LPS and ATP, the cell proliferation was decreased and the expressions of pyroptosis-related inflammatory factors were increased Disulfiram and glycyrrhizic acid treatment led to enhanced cell proliferation and increased expressions of pyroptosis-related inflammatory factors, while disulfiram showed better alleviative effects on the inflammation in chondrocytes in OA However, co-treatment with disulfiram at a high concentration and glycyrrhizic acid did not result in higher proliferation of chondrocytes and alleviated inflammation, but led to oxidative stress In conclusion, co-treatment with disulfiram and glycyrrhizic acid at a standard concentration suppresses the inflammatory response of chondrocytes, which may provide guidance for the use of the drugs in the treatment of OA

Journal ArticleDOI
01 Jan 2021-Pain
TL;DR: This work has shown that ALDH2 activity influences endometriosis and its associated pain and this work has confirmed the importance of knowing the carrier and removal status of canine coronavirus, as a source of infection for women with HPV.
Abstract: Endometriosis affects ∼176 million women worldwide, yet on average, women experience pain ∼10 years from symptom onset before being properly diagnosed. Standard treatments (drugs or surgery) often fail to provide long-term pain relief. Elevated levels of reactive aldehydes such as 4-hydroxynonenal (4-HNE) have been implicated in the peritoneal fluid of women with endometriosis and upon accumulation, reactive aldehydes can form protein-adducts and/or generate pain. A key enzyme in detoxifying reactive aldehydes to less reactive forms is the mitochondrial enzyme aldehyde dehydrogenase-2 (ALDH2). Here, we tested the hypothesis that aberrant reactive aldehyde detoxification by ALDH2 underlies endometriosis and its associated pain. We determined, in the eutopic and ectopic endometrium of women with severe (stage IV) peritoneal endometriosis, that ALDH2 enzyme activity was decreased, which was associated with decreased ALDH2 expression and increased 4-HNE adduct formation compared to the eutopic endometrium of controls in the proliferative phase. Using a rodent model of endometriosis and an ALDH2*2 knock-in mouse with decreased ALDH2 activity, we determined that increasing ALDH2 activity with the enzyme activator Alda-1 could prevent endometriosis lesion development as well as alleviate pain-associated behaviors in proestrus. Overall, our findings suggest that targeting the ALDH2 enzyme in endometriosis may lead to better treatment strategies and in the proliferative phase, that increased 4-HNE adduct formation within the endometrium may serve as a less invasive diagnostic biomarker to reduce years of suffering in women.

Journal ArticleDOI
TL;DR: In this article, akr1a1a-/- zebrafish mutants were generated using CRISPR/Cas9 technology and accumulated endogenous acrolein was confirmed in larvae and livers of adults, which strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.
Abstract: Increased acrolein (ACR), a toxic metabolite derived from energy consumption, is associated with diabetes and its complications. However, the molecular mechanisms are mostly unknown, and a suitable animal model with internal increased ACR does not exist for in vivo studying so far. Several enzyme systems are responsible for acrolein detoxification, such as Aldehyde Dehydrogenase (ALDH), Aldo-Keto Reductase (AKR), and Glutathione S-Transferase (GST). To evaluate the function of ACR in glucose homeostasis and diabetes, akr1a1a-/- zebrafish mutants are generated using CRISPR/Cas9 technology. Accumulated endogenous acrolein is confirmed in akr1a1a-/- larvae and livers of adults. Moreover, a series of experiments are performed regarding organic alterations, the glucose homeostasis, transcriptome, and metabolomics in Tg(fli1:EGFP) zebrafish. Akr1a1a-/- larvae display impaired glucose homeostasis and angiogenic retina hyaloid vasculature, which are caused by reduced acrolein detoxification ability and increased internal ACR concentration. The effects of acrolein on hyaloid vasculature can be reversed by acrolein-scavenger l-carnosine treatment. In adult akr1a1a-/- mutants, impaired glucose tolerance accompanied by angiogenic retina vessels and glomerular basement membrane thickening, consistent with an early pathological appearance in diabetic retinopathy and nephropathy, are observed. Thus, the data strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.

Journal ArticleDOI
TL;DR: In this article, the authors investigated halofuginone, derived from a natural plant alkaloid, for the treatment of Nrf2-activated pancreatic cancer cells, and they found that it decreased the number of pancreatic intraepithelial neoplasias in Kras and p53 mutant (KPC) mice.
Abstract: As the central regulator of the oxidative stress response, nuclear factor erythroid 2–related factor 2 (Nrf2) is attracting great interest as a therapeutic target for various cancers, and the possible clinical applications of novel Nrf2 inhibitors have been explored in Nrf2-activated cancers. In the present study, we specifically investigated halofuginone, which is derived from a natural plant alkaloid. We found that halofuginone administration decreased the number of pancreatic intraepithelial neoplasias in pancreas-specific Kras and p53 mutant (KPC) mice. In Nrf2-activated pancreatic cancer cell lines established from KPC mice, halofuginone rapidly depleted Nrf2 in Nrf2-activated cancer cells. Both in vitro and in vivo, it sensitized Nrf2-activated pancreatic cancer cells to gemcitabine, which is the first-line chemotherapy in clinical practice. In our mechanistic study, we found that halofuginone downregulated aldehyde dehydrogenase 3a1 (ALDH3A1) in mouse pancreatic cancer cells. The Nrf2 inducer diethyl maleate upregulated ALDH3A1, and knockdown of Aldh3a1 sensitized Nrf2-activated cancer cells to gemcitabine, strongly suggesting that ALDH3A1 is regulated by Nrf2 and that it contributes to gemcitabine resistance. The current study demonstrated the therapeutic benefits of halofuginone in Nrf2-activated pancreatic cancers. SIGNIFICANCE STATEMENT We identified nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream target aldehyde dehydrogenase 3a1 (ALDH3A1) as novel therapeutic targets in pancreatic cancer. They negatively affect the efficacy of a conventional chemotherapeutic agent, gemcitabine. We confirmed that Nrf2 plays a pivotal role in the induction of ALDH3A1.

Journal ArticleDOI
TL;DR: Aldehyde dehydrogenases are vital for aerobic hydrocarbon degradation and is involved in the last step of catalysing the oxidation of aldehydes to carboxylic acids as mentioned in this paper.
Abstract: Aldehyde dehydrogenases are vital for aerobic hydrocarbon degradation and is involved in the last step of catalysing the oxidation of aldehydes to carboxylic acids. With the global increase in hydrocarbon pollution of different environments, these enzymes have the potential to be used in enzymatic bioremediation applications. Fifteen fosmid clones with hydrocarbon degrading potential were functionally screened to identify dehydrogenase enzymes. Accordingly, the fosmid insert of the positive clones were sequenced using PacBio next generation sequencing platform and de novo assembled using CLC Genomic Work Bench. The 1233 bp long open reading frame (ORF) for DHY-SC-VUT5 was found to share a protein sequence similarity of 97.7% to short-chain dehydrogenase from E. coli. The 1470 bp long ORF for DHY-G-VUT7 was found to share a protein sequence similarity of 23.9% to glycine dehydrogenase (decarboxylating) (EC 1.4.4.2) from Caulobacter vibrioides (strain NA1000 / CB15N) (Caulobacter crescentus). The in silico analyses and blast against UNIPROT protein database with the stated similarity show that the two dehydrogenases are novel. Biochemical characterization revealed, that the highest relative activity was observed at substrate concentrations of 150 mM and 50 mM for DHY-SC-VUT5 and DHY-G-VUT7, respectively. The Km values were found to be 13.77 mM with a Vmax of 0.009135 μmol.min− 1 and 2.832 mM with a Vmax of 0.005886 μmol.min− 1 for DHY-SC-VUT5 and DHY-G-VUT7, respectively. Thus, a potent and efficient enzyme for alkyl aldehyde conversion to carboxylic acid. The microorganisms overexpressing the novel aldehyde dehydrogenases could be used to make up microbial cocktails for biodegradation of alkanes. Moreover, since the discovered enzymes are novel it would be interesting to solve their structures by crystallography and explore the downstream applications.

Journal ArticleDOI
29 Sep 2021
TL;DR: In this article, aldehyde dehydrogenase (ALDH) is a multigene family with 19 functional members encoding a class of diverse but important enzymes for detoxification or biotransformation of different endogenous and exogenous ALDH substrates.
Abstract: Human aldehyde dehydrogenase (ALDH) is a multigene family with 19 functional members encoding a class of diverse but important enzymes for detoxification or biotransformation of different endogenous and exogenous aldehyde substrates. Genetic mutations in the ALDH genes can cause the accumulation of toxic aldehydes and abnormal carbonyl metabolism and serious human pathologies. However, the physiological functions and substrate specificity of many ALDH genes are still unknown. Although many genetic variants of the ALDH gene family exist in human populations, their phenotype or clinical consequences have not been determined. Using the most comprehensive global human Genome Aggregation Database, gnomAD, we annotated here 1350 common variants in the 19 ALDH genes. These 1350 common variants represent all known genetic polymorphisms with a variant allele frequency of ≥0.1% (or an expected occurrence of ≥1 carrier per 500 individuals) in any of the seven major ethnic groups recorded by gnomAD. We detailed 13 types of DNA sequence variants, their genomic positions, SNP ID numbers, and allele frequencies among the seven major ethnic groups worldwide for each of the 19 ALDH genes. For the 313 missense variants identified in the gnomAD, we used two software algorithms, Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant From Tolerant (SIFT), to predict the consequences of the variants on the structure and function of the enzyme. Finally, gene constraint analysis was used to predict how well genetic mutations were tolerated by selection forces for each of the ALDH genes in humans. Based on the ratio of observed and expected variant numbers in gnomAD, the three ALDH1A gene members, ALDH1A1, ALDH1A2, and ALDH1A3, appeared to have the lowest tolerance for loss-of-function mutations as compared to the other ALDH genes (# observed/# expected ratio 0.15-0.26). These analyses suggest that the ALDH1A1, ALDH1A2, and ALDH1A3 enzymes may serve a more essential function as compared with the other ALDH enzymes; functional loss mutations are much less common in healthy human populations than expected. This informatic analysis may assist the research community in determining the physiological function of ALDH isozymes and associate common variants with clinical phenotypes.

Journal ArticleDOI
TL;DR: In this article, a putative iron-containing alcohol dehydrogenase (Aldh) was revealed to be a bifunctional aldehyde/alcohol deacetylase (Fe-AAdh) that catalyzed both reactions from acetyl-coenzyme A to acetaldehyde (ac-ald), and from ac-ald to ethanol.
Abstract: Hyperthermophilic Thermotoga spp. are excellent candidates for the biosynthesis of cellulosic ethanol producing strains because they can grow optimally at 80 °C with ability to degrade and utilize cellulosic biomass. In T. neapolitana (Tne), a putative iron-containing alcohol dehydrogenase was, for the first time, revealed to be a bifunctional aldehyde/alcohol dehydrogenase (Fe-AAdh) that catalyzed both reactions from acetyl-coenzyme A (ac-CoA) to acetaldehyde (ac-ald), and from ac-ald to ethanol, while the putative aldehyde dehydrogenase (Aldh) exhibited only CoA-independent activity that oxidizes ac-ald to acetic acid. The biochemical properties of Fe-AAdh were characterized, and bioinformatics were analyzed. Fe-AAdh exhibited the highest activities for the reductions of ac-CoA and acetaldehyde at 80–85 °C, pH 7.54, and had a 1-h half-life at about 92 °C. The Fe-AAdh gene is highly conserved in Thermotoga spp., Pyrococcus furiosus and Thermococcus kodakarensis, indicating the existence of a fermentation pathway from ac-CoA to ethanol via acetaldehyde as the intermediate in hyperthermophiles.

Journal ArticleDOI
TL;DR: It is reported that an uncharacterized open reading frame YMR152W from S. cerevisiae encodes a novel aldehyde reductase with catalytic functions for reduction of at least six aldehydes, including two furfural and 5-hydroxymethylfurfural, three aliphatic aldeHydes, and an aromaticAldehyde (benzaldehyde) with NADH or NADPH as the co-factor.

Journal ArticleDOI
TL;DR: Aldehyde dehydrogenases (ALDHs) belong to NAD(P)+-dependent enzymes and are considered ‘‘aldehyde scavengers’’ as discussed by the authors and play crucial roles in growth, development, and environmental stress adaptation in plants.

Journal ArticleDOI
20 Jan 2021
TL;DR: In this paper, the authors report the phylogenetic relationship of these proteins and in silico analysis of rice-detoxifying protein structures and their substrate affinity with cofactors using docking and molecular simulation studies.
Abstract: Reactive carbonyl compounds (RCCs) such as hydroxynonenol, malondialdehyde, acrolein, crotonaldehyde, methylglyoxal, and glyoxal accumulate at higher levels under stress in plants and damage the cell metabolic activities. Plants have evolved several detoxifying enzymes such as aldo-keto reductases (AKRs), aldehyde/alcohol dehydrogenases (ALDH/ADH), and glyoxalases. We report the phylogenetic relationship of these proteins and in silico analysis of rice-detoxifying protein structures and their substrate affinity with cofactors using docking and molecular simulation studies. Molecular simulations with nicotinamide adenine dinucleotide phosphate or glutathione cofactor docking with commonly known reactive substrates suggests that the AKRs, ALDH, and ADH proteins attain maximum conformational changes, whereas glyoxalase has fewer conformational changes with cofactor binding. Several AKRs showed a significant binding affinity with many RCCs. The rice microarray studies showed enhanced expression of many AKRs in resistant genotypes, which also showed higher affinity to RCCs, signifying their importance in managing carbonyl stress. The higher expression of AKRs is regulated by stress-responsive transcription factors (TFs) as we identified stress-specific cis-elements in their promoters. The study reports the stress-responsive nature of AKRs, their regulatory TFs, and their best RCC targets, which may be used for crop improvement programs.

Posted ContentDOI
10 May 2021-bioRxiv
TL;DR: In this paper, the role of ALDH genes in the metastatic spread and homing of prostate cancer cells to the bone has been investigated, which can be attributed to regulating the transforming growth factor beta 1 (TGFB1) and matrix metalloproteinases (MMPs).
Abstract: Cancer stem cells (CSC) are characterized by high self-renewal capacity, tumor-initiating potential, and therapy resistance. Aldehyde dehydrogenase (ALDH)+ cell population serves as an indicator of prostate CSCs with increased therapy resistance, enhanced DNA double-strand break repair, and activated epithelial-mesenchymal transition (EMT) and migration. Numerous ALDH genes contribute to ALDH enzymatic activity; however, only some of them showed clinical relevance. We found that ALDH1A1 and ALDH1A3 genes functionally regulate CSC properties and radiation sensitivity of PCa. We revealed a negative correlation between ALDH1A1 and ALDH1A3 expression in publicly available prostate cancer (PCa) datasets and demonstrated that ALDH1A1 and ALDH1A3 have opposing predictive value for biochemical recurrence-free survival. Our data suggest an association of ALDH1A1 with the metastatic burden, elucidating the role of ALDH genes in the metastatic spread and homing to the bone, which can be, at least partially, attributed to regulating the transforming growth factor beta 1 (TGFB1) and matrix metalloproteinases (MMPs). ALDH genes play a diverse role in PCa development under AR and β-catenin-dependent regulation, with ALDH1A1 becoming dominant in later stages of tumor development when PCa cells gain androgen independence. Taken together, our results indicate that ALDH1A1 and ALDH1A3 modulate PCa radiosensitivity, regulate CSCs phenotype, and spread of PCa cells to the bone, therefore having clinical implication for identifying patients at high risk for progression to metastatic disease.

Journal ArticleDOI
TL;DR: In this paper, aldehyde dehydrogenase (ALDH) 2 is used to detoxify 4-hydroxy-2-nonenal (4HNE), a key lipid peroxidation product, causing cellular dysfunction by forming adducts with proteins.

Posted ContentDOI
06 May 2021
TL;DR: It is suggested that probiotic has a potential to downregulate the alcohol and acetaldehyde concentrations, and their effects depend on the presence or absence of polymorphism on the ALDH2 gene.
Abstract: Excessive alcohol consumption is one of the most significant causes of morbidity and mortality worldwide. Alcohol is oxidized to toxic and carcinogenic acetaldehyde by alcohol dehydrogenase (ADH) and further oxidized to a non-toxic acetate by aldehyde dehydrogenase (ALDH). There are two major ALDH isoforms, cytosolic and mitochondrial, encoded by ALDH1 and ALDH2 genes, respectively. The ALDH2 polymorphism is associated with flushing response to alcohol use. Emerging evidence shows that Lactobacillus and Bifidobacterium species encode alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) mediate alcohol and acetaldehyde metabolism, respectively. A randomized, double-blind, placebo-controlled crossover clinical trial was designed to study the effects of Lactobacillus and Bifidobacterium probiotic mixture in humans and assessed their effects on alcohol and acetaldehyde metabolism. Here, twenty-seven wild types (ALDH2*1/*1) and the same number of heterozygotes (ALDH2*2/*1) were recruited for the study. The enrolled participants were randomly divided into either the probiotic (Duolac ProAP4) or the placebo group. Each group received a probiotic or placebo capsule for 15 days with subsequent crossover. Primary outcomes were measurement of alcohol and acetaldehyde in the blood after the alcohol intake. Blood levels of alcohol and acetaldehyde were significantly downregulated by probiotic supplementation in subjects with ALDH2*2/*1 genotype, but not in those with ALDH2*1/*1 genotype. However, there were no marked improvements in hangover score parameters between test and placebo groups. No clinically significant changes were observed in safety parameters. These results suggest that Duolac ProAP4 has a potential to downregulate the alcohol and acetaldehyde concentrations, and their effects depend on the presence or absence of polymorphism on the ALDH2 gene.