scispace - formally typeset
Search or ask a question

Showing papers on "Atmospheric methane published in 2008"


Journal ArticleDOI
15 May 2008-Nature
TL;DR: It is suggested that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation) controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands.
Abstract: Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between 350 and 800 parts per 109 by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by 100,000 yr glacial–interglacial cycles up to 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.

839 citations


Journal ArticleDOI
20 Mar 2008-Nature
TL;DR: A near-infrared transmission spectrum of the planet HD 189733b that shows the presence of methane is reported, and a resolved water vapour band at 1.9 μm confirms the recent claim of water in this object.
Abstract: Molecules present in the atmospheres of extrasolar planets are expected to influence strongly the balance of atmospheric radiation, to trace dynamical and chemical processes, and to indicate the presence of disequilibrium effects. As molecules have the potential to reveal atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jupiter planets. As these bands can overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report a near-infrared transmission spectrum of the planet HD 189733b that shows the presence of methane. Additionally, a resolved water vapour band at 1.9 (micro)m confirms the recent claim4 of water in this object. On thermochemical grounds, carbon monoxide is expected to be abundant in the upper atmosphere of hot-Jupiter planets, but is not identifiable here; therefore the detection of methane rather than carbon monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanism that leads to an enhancement of methane.

589 citations


Journal ArticleDOI
TL;DR: In this article, the relative roles of an increase in emission rate or a decrease in concentration of the hydroxyl radical, the largest methane sink, are examined, along with an inverse method applied to a simple model of atmospheric chemistry and transport.
Abstract: [1] Following almost a decade with little change in global atmospheric methane mole fraction, we present measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) networks that show renewed growth starting near the beginning of 2007. Remarkably, a similar growth rate is found at all monitoring locations from this time until the latest measurements. We use these data, along with an inverse method applied to a simple model of atmospheric chemistry and transport, to investigate the possible drivers of the rise. Specifically, the relative roles of an increase in emission rate or a decrease in concentration of the hydroxyl radical, the largest methane sink, are examined. We conclude that: 1) if the annual mean hydroxyl radical concentration did not change, a substantial increase in emissions was required simultaneously in both hemispheres between 2006 and 2007; 2) if a small drop in the hydroxyl radical concentration occurred, consistent with AGAGE methyl chloroform measurements, the emission increase is more strongly biased to the Northern Hemisphere.

481 citations


Journal ArticleDOI
TL;DR: In this paper, a major product of organic matter decomposition in lakes, Methane (CH4) represents a major contribution of organic decomposition. Once produced in the sediments, CH4 can be either oxidized or emitted as a greenhouse gas to the atmosphere.
Abstract: Methane (CH4) represents a major product of organic matter decomposition in lakes. Once produced in the sediments, CH4 can be either oxidized or emitted as a greenhouse gas to the atmosphere. Lakes ...

460 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that oceanic methane is produced aerobically as a byproduct of methylphosphonate decomposition in phosphate-stressed waters, and they suggest that aerobic marine methane production will be sensitive to the changes in water-column stratification and nutrient limitation that are likely to result from greenhouse-gas-induced ocean warming.
Abstract: Methane is a potent greenhouse gas that has contributed approximately 20% to the Earth’s warming since pre-industrial times. The world’s oceans are an important source of methane, comprising 1–4% of annual global emissions. But despite its global significance, oceanic methane production is poorly understood. In particular, methane concentrations in the surface waters of most of the world’s oceans are supersaturated with respect to atmospheric concentrations, but the origin of this methane, which has been thought to be produced exclusively in anaerobic environments, is not known. Here, we measure methane production in seawater samples amended with methylphosphonate, an organic, phosphorus-containing compound. We show that methane is produced aerobically as a by-product of methylphosphonate decomposition in phosphate-stressed waters. Methylphosphonate decomposition, and thus methane production, may be enhanced by the activity of nitrogen-fixing microorganisms. We suggest that aerobic marine methane production will be sensitive to the changes in water-column stratification and nutrient limitation that are likely to result from greenhouse-gas-induced ocean warming. Surface waters of most of the world’s oceans are supersaturated with respect to atmospheric methane. Measurements in seawater samples suggest that an aerobic methane production pathway, which involves the decomposition of phosphorus-containing organic compounds, may be responsible.

450 citations


Journal ArticleDOI
04 Dec 2008-Nature
TL;DR: The findings suggest that permafrost-associated freeze-in bursts of methane emissions from tundra regions could be an important and so far unrecognized component of the seasonal distribution of methane emitters from high latitudes.
Abstract: Terrestrial wetland emissions are the largest single source of the greenhouse gas methane. Northern high-latitude wetlands contribute significantly to the overall methane emissions from wetlands, but the relative source distribution between tropical and high-latitude wetlands remains uncertain. As a result, not all the observed spatial and seasonal patterns of atmospheric methane concentrations can be satisfactorily explained, particularly for high northern latitudes. For example, a late-autumn shoulder is consistently observed in the seasonal cycles of atmospheric methane at high-latitude sites, but the sources responsible for these increased methane concentrations remain uncertain. Here we report a data set that extends hourly methane flux measurements from a high Arctic setting into the late autumn and early winter, during the onset of soil freezing. We find that emissions fall to a low steady level after the growing season but then increase significantly during the freeze-in period. The integral of emissions during the freeze-in period is approximately equal to the amount of methane emitted during the entire summer season. Three-dimensional atmospheric chemistry and transport model simulations of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60 degrees N. Our findings suggest that permafrost-associated freeze-in bursts of methane emissions from tundra regions could be an important and so far unrecognized component of the seasonal distribution of methane emissions from high latitudes.

322 citations


Journal ArticleDOI
TL;DR: It is shown that the type II methanotroph Methylocystis sp.
Abstract: Methane-oxidizing bacteria (methanotrophs) attenuate methane emission from major sources, such as wetlands, rice paddies, and landfills, and constitute the only biological sink for atmospheric methane in upland soils. Their key enzyme is particulate methane monooxygenase (pMMO), which converts methane to methanol. It has long been believed that methane at the trace atmospheric mixing ratio of 1.75 parts per million by volume (ppmv) is not oxidized by the methanotrophs cultured to date, but rather only by some uncultured methanotrophs, and that type I and type II methanotrophs contain a single type of pMMO. Here, we show that the type II methanotroph Methylocystis sp. strain SC2 possesses two pMMO isozymes with different methane oxidation kinetics. The pmoCAB1 genes encoding the known type of pMMO (pMMO1) are expressed and pMMO1 oxidizes methane only at mixing ratios >600 ppmv. The pmoCAB2 genes encoding pMMO2, in contrast, are constitutively expressed, and pMMO2 oxidizes methane at lower mixing ratios, even at the trace level of atmospheric methane. Wild-type strain SC2 and mutants expressing pmoCAB2 but defective in pmoCAB1 consumed atmospheric methane for >3 months. Growth occurred at 10–100 ppmv methane. Most type II but no type I methanotrophs possess the pmoCAB2 genes. The apparent Km of pMMO2 (0.11 μM) in strain SC2 corresponds well with the Km(app) values for methane oxidation measured in soils that consume atmospheric methane, thereby explaining why these soils are dominated by type II methanotrophs, and some by Methylocystis spp., in particular. These findings change our concept of methanotroph ecology.

249 citations


Journal ArticleDOI
TL;DR: In this article, the inventory of Titan surface materials, including polar lake liquids and equatorial dune sands, has been estimated to contain more hydrocarbon liquid than the entire known oil and gas reserves on Earth.
Abstract: [1] Cassini RADAR observations now permit an initial assessment of the inventory of two classes, presumed to be organic, of Titan surface materials: polar lake liquids and equatorial dune sands. Several hundred lakes or seas have been observed, of which dozens are each estimated to contain more hydrocarbon liquid than the entire known oil and gas reserves on Earth. Dark dunes cover some 20% of Titan's surface, and comprise a volume of material several hundred times larger than Earth's coal reserves. Overall, however, the identified surface inventories (>3 × 104 km3 of liquid, and >2 × 105 km3 of dune sands) are small compared with estimated photochemical production on Titan over the age of the solar system. The sand volume is too large to be accounted for simply by erosion in observed river channels or ejecta from observed impact craters. The lakes are adequate in extent to buffer atmospheric methane against photolysis in the short term, but do not contain enough methane to sustain the atmosphere over geologic time. Unless frequent resupply from the interior buffers this greenhouse gas at exactly the right rate, dramatic climate change on Titan is likely in its past, present and future.

210 citations


Journal ArticleDOI
TL;DR: In this article, a new coherent contemporary budget in which 30 ± 5% (based on atmospheric radiomethane measurements) of the global source of 582 ± 87 Tg yr -1 has fossil origin, both natural and anthropogenic, was proposed.
Abstract: Converging evidence from new top-down and bottom-up estimates of fossil "radiocarbon-free" methane emissions indicates that natural geologic sources account for a substantial component of the atmospheric methane budget. Comparing emission estimates based on atmospheric 14 CH 4 ("radiomethane") with geologic emissions from seepage, including terrestrial macroseeps, microseepage, marine seeps, and geothermal/volcanic emissions from the Earth's crust, shows that such "geo-CH 4 " sources can be conservatively estimated at 53 ± 11 Tg yr -1 globally. This makes geo-CH 4 second in importance to wetlands as a natural methane source. Such a new appraisal can easily be accommodated within the uncertainty of the global methane budget as recently compiled, and recognizes the importance of geophysical out-gassing of methane generated within the lithosphere. We propose a new coherent contemporary budget in which 30 ± 5% (based on atmospheric radiomethane measurements) of the global source of 582 ± 87 Tg yr -1 has fossil origin, both natural and anthropogenic.

200 citations


Journal ArticleDOI
TL;DR: In this article, the authors classified ebullition (bubbling) into three categories (background, point sources, and hot spots) on the basis of fluxes, major gas concentrations, and isotopic composition.
Abstract: [1] This study reports an atmospheric methane (CH4) source term previously uncharacterized regarding strength and isotopic composition. Methane emissions from 14 Siberian lakes and 9 Alaskan lakes were characterized using stable isotopes (13C and D) and radiocarbon (14C) analyses. We classified ebullition (bubbling) into three categories (background, point sources, and hot spots) on the basis of fluxes, major gas concentrations, and isotopic composition. Point sources and hot spots had a strong association with thermokarst (thaw) erosion because permafrost degradation along lake margins releases ancient organic matter into anaerobic lake bottoms, fueling methanogenesis. With increasing ebullition rate, we observed increasing CH4 concentration of greater radiocarbon age, depletion of 13CCH4, and decreasing bubble N2 content. Microbial oxidation of methane was observed in bubbles that became trapped below and later within winter lake ice; however, oxidation appeared insignificant in bubbles sampled immediately after release from sediments. Methanogenic pathways differed among the bubble sources: CO2 reduction supported point source and hot spot ebullition to a large degree, while acetate fermentation appeared to contribute to background bubbling. To provide annual whole-lake and regional CH4 isofluxes for the Siberian lakes, we combined maps of bubble source distributions with long-term, continuous flux measurements and isotopic composition. In contrast to typical values used in inverse models of atmospheric CH4 for northern wetland sources (δ13CCH4 = −58‰, 14C age modern), which have not included northern lake ebullition as a source, we show that this large, new source of high-latitude CH4 from lakes is isotopically distinct (δ13CCH4 = −70‰, 14C age 16,500 years, for North Siberian lakes).

188 citations


Journal ArticleDOI
17 Apr 2008-Nature
TL;DR: An ice core record of carbon isotopic ratios in methane over the entire last glacial–interglacial transition shows that the carbon in atmospheric methane was isotopically much heavier in cold climate periods, and the atmospheric lifetime of methane is reduced duringcold climate periods.
Abstract: Past atmospheric methane concentrations show strong fluctuations in parallel to rapid glacial climate changes in the Northern Hemisphere superimposed on a glacial-interglacial doubling of methane concentrations. The processes driving the observed fluctuations remain uncertain but can be constrained using methane isotopic information from ice cores. Here we present an ice core record of carbon isotopic ratios in methane over the entire last glacial-interglacial transition. Our data show that the carbon in atmospheric methane was isotopically much heavier in cold climate periods. With the help of a box model constrained by the present data and previously published results, we are able to estimate the magnitude of past individual methane emission sources and the atmospheric lifetime of methane. We find that methane emissions due to biomass burning were about 45 Tg methane per year, and that these remained roughly constant throughout the glacial termination. The atmospheric lifetime of methane is reduced during cold climate periods. We also show that boreal wetlands are an important source of methane during warm events, but their methane emissions are essentially shut down during cold climate conditions.

Journal ArticleDOI
TL;DR: In this paper, a variational data assimilation system for inverse modeling of atmospheric methane emissions is presented, which can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time enables the optimization of a large number of model parameters.
Abstract: A four-dimensional variational (4D-Var) data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007), which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008), who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.

Journal ArticleDOI
TL;DR: In this paper, the authors explore the effect of a finite reservoir of methane on Titan's atmospheric circulation, precipitation patterns, and surface methane content and develop a soil model that accounts for the methane cycle in the surface-atmosphere system, and implement this surface model in a two-dimensional model of the Titan's atmosphere.
Abstract: [1] We explore the effect of a finite reservoir of methane on Titan's atmospheric circulation, precipitation patterns, and surface methane content. We develop a soil model that accounts for the methane cycle in the surface-atmosphere system, and we implement this surface model in a two-dimensional model of the Titan's atmosphere. Seasonal oscillations in latitude of the large-scale circulation accomplish net drying of the low-latitude surface by diverging methane vapor from low latitudes to higher latitudes. Simulations with an initially deep methane reservoir indicate this mechanism is able to dry ∼1.75 meters of liquid methane per Titan year from the low-latitude surface. The existence of low-latitude desert morphologies suggests that the system has had sufficient time to completely remove the surface methane by this mechanism. We then varied the reservoir size, focusing on initial depths of 30 meters of liquid methane or less and compared the results to available observations. The climate system has an abrupt transition to a warmer state with less precipitation and nearly global surface drying near the level at which the atmosphere can store the majority of the methane reservoir as vapor or around 6.5 meters of equivalent liquid methane for our particular choice of parameters. A comparison of our model results with Huygens' observations suggests Titan's climate mimics a state in which most of the methane inventory with direct access to the atmosphere (i.e., excluding underground sources) is stored in the atmosphere.

Journal ArticleDOI
TL;DR: In this paper, an integrated assessment of greenhouse gas emissions in slash and burn agriculture and an alternative chop-and-mulch system in the Amazon Basin is presented. And the authors demonstrate a potential 'win-win' strategy for maintaining soil fertility and reducing net greenhouse gases emissions, thus simultaneously contributing to sustainability at both spatial scales.
Abstract: Fires set for slash-and-burn agriculture contribute to the current unsustainable accumulation of atmospheric greenhouse gases, and they also deplete the soil of essential nutrients, which compromises agricultural sustainability at local scales. Integrated assessments of greenhouse gas emissions have compared intensive cropping systems in industrialized countries, but such assessments have not been applied to common cropping systems of smallholder farmers in developing countries. We report an integrated assessment of greenhouse gas emissions in slash-and-bum agriculture and an alternative chop-and-mulch system in the Amazon Basin. The soil consumed atmospheric methane (CH 4 ) under slash-and-burn treatment and became a net emitter of CH 4 to the atmosphere under the mulch treatment. Mulching also caused about a 50% increase in soil emissions of nitric oxide and nitrous oxide and required greater use of fertilizer and fuel for farm machinery. Despite these significantly higher emissions of greenhouse gases during the cropping phase under the alternative chop-and-mulch system, calculated pyrogenic emissions in the slash-and-burn system were much larger, especially for CH 4 . The global warming potential CO 2 -equivalent emissions calculated for the entire crop cycles were at least five times lower in chop-and-mulch compared with slash-and-bum. The crop yields were similar for the two systems. While economic and logistical considerations remain to be worked out for alternatives to slash-and-bum, these results demonstrate a potential 'win-win' strategy for maintaining soil fertility and reducing net greenhouse gas emissions, thus simultaneously contributing to sustainability at both spatial scales.

Journal ArticleDOI
TL;DR: The anthropogenic explanation for the increase in atmospheric methane concentration during the last 5000 years requires large CH4 emissions from human activities beginning early in the Bronze Age as mentioned in this paper, which supports the hypothesis that early farming caused the anomalous methane reversal.

Journal ArticleDOI
TL;DR: In this article, a large number of spectra measured by the planetary Fourier spectrometer aboard the European Mars Express mission have been studied to identify the average properties of methane in the Martian atmosphere.

Journal ArticleDOI
TL;DR: Methanotrophs in the rhizosphere of rice field ecosystems attenuate the emissions of CH(4) into the atmosphere and thus play an important role for the global cycle of this greenhouse gas and PLFA-SIP showed that the active methanotrophic populations exhibit a pronounced spatial and temporal variation in rice microcosms.
Abstract: Methanotrophs in the rhizosphere of rice field ecosystems attenuate the emissions of CH(4) into the atmosphere and thus play an important role for the global cycle of this greenhouse gas. Therefore, we measured the activity and composition of the methanotrophic community in the rhizosphere of rice microcosms. Methane oxidation was determined by measuring the CH(4) flux in the presence and absence of difluoromethane as a specific inhibitor for methane oxidation. Methane oxidation started on day 24 and reached the maximum on day 32 after transplantation. The total methanotrophic community was analysed by terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. The metabolically active methanotrophic community was analysed by stable isotope probing of microbial phospholipid fatty acids (PLFA-SIP) using (13)C-labelled CH(4) directly added to the rhizospheric region. Rhizospheric soil and root samples were collected after exposure to (13)CH(4) for 8 and 18 days. Both T-RFLP/cloning and PLFA-SIP approaches showed that type I and type II methanotrophic populations changed over time with respect to activity and population size in the rhizospheric soil and on the rice roots. However, type I methanotrophs were more active than type II methanotrophs at both time points indicating they were of particular importance in the rhizosphere. PLFA-SIP showed that the active methanotrophic populations exhibit a pronounced spatial and temporal variation in rice microcosms.

Journal ArticleDOI
TL;DR: In this article, an in situ methane production/consumption cycle during a summer phytoplankton bloom and a potential link to DMSP concentration in Storfjorden (Svalbard Archipelago) is reported.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a realistic assessment of the theory that the basal regions of the ice sheets that formed over North America and Europe during glaciations were host to significant populations of anaerobic microorganisms, including methanogens, able to metabolize organic carbon sequestered during interglacials and overridden during Quaternary glacials.
Abstract: [1] Subglacial environments are a previously neglected component of the Earth's global carbon cycle, a reflection of the view held until recently that they are dominated by abiotic and oxic conditions. Here we provide a realistic assessment of the theory that the basal regions of the ice sheets that formed over North America and Europe during glaciations were host to significant populations of anaerobic microorganisms, including methanogens, able to metabolize organic carbon sequestered during interglacials and overridden during Quaternary glacials. In doing so, we review the current evidence for subglacial methane release during deglaciation, estimate the size of the subglacial reservoir of organic carbon (SOC), and assess the amount of SOC available to subglacial microbes and the likely pathways and rates of carbon turnover. We then discuss the fate of subglacial methane and the potential impact of its release on atmospheric methane concentrations. We calculate that the SOC equates to 418–610 Pg C and includes carbon from terrestrial soils/vegetation, peatlands, lake, and marine sediments. The SOC that is potentially available for microbial conversion to methane is smaller than this estimate due to (1) glacial erosion, (2) accumulation of recalcitrant organic carbon compounds over time, (3) conversion to carbon dioxide by aerobic/anaerobic respiration, and (4) incomplete conversion of labile organic matter to methane. We estimate that the total SOC available for conversion to methane is 63 Pg C. Our estimates of methane production potentials span a wide range because of the current uncertainty surrounding subglacial metabolic rates. We believe, however, that there is a strong likelihood that subglacial microbes could convert 63 Pg of SOC to methane during a glacial cycle. If this were the case, release of this methane from the ice sheet margins during retreat would need to be episodic in order to significantly impact atmospheric methane concentrations. Our findings suggest that it may well be important to consider subglacial environments as active components of the Earth's carbon cycle. Conclusive determination of the potential impact of subglacial methane production on atmospheric methane concentrations during deglaciation, however, awaits more precise determination of the ability of subglacial microbes to degrade organic carbon components and their associated rates of metabolism under in situ conditions.

Journal ArticleDOI
TL;DR: The rumen microbial ecosystem produces methane as a result of anaerobic fermentation, and in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.
Abstract: The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

Journal ArticleDOI
TL;DR: In this article, a 4D-Var data assimilation system was applied to the scan-imaging-absorption-spectrometer for Atmospheric Chartography (SCIAMACHY) data to estimate the global distribution of atmospheric methane.
Abstract: Recent observations from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument aboard ENVISAT have brought new insights in the global distribution of atmospheric methane. In particular, the observations showed higher methane concentrations in the tropics than previously assumed. Here, we analyze the SCIAMACHY observations and their implications for emission estimates in detail using a four-dimensional variational (4D-Var) data assimilation system. We focus on the period September to November 2003 and on the South American continent, for which the satellite observations showed the largest deviations from model simulations. In this set-up the advantages of the 4D-Var approach and the zooming capability of the underlying TM5 atmospheric transport model are fully exploited. After application of a latitude-dependent bias correction to the SCIAMACHY observations, the assimilation system is able to accurately fit those observations, while retaining consistency with a network of surface methane measurements. The main emission increments resulting from the inversion are an increase in the tropics, a decrease in South Asia, and a decrease at northern hemispheric high latitudes. The SCIAMACHY observations yield considerable additional emission uncertainty reduction, particularly in the (sub-)tropical regions, which are poorly constrained by the surface network. For tropical South America, the inversion suggests more than a doubling of emissions compared to the a priori during the 3 months considered. Extensive sensitivity experiments, in which key assumptions of the inversion set-up are varied, show that this finding is robust. Independent airborne observations in the Amazon basin support the presence of considerable local methane sources. However, these observations also indicate that emissions from eastern South America may be smaller than estimated from SCIAMACHY observations. In this respect it must be realized that the bias correction applied to the satellite observations does not take into account potential regional systematic errors, which - if identified in the future - will lead to shifts in the overall distribution of emission estimates.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the range of measurements that give confidence in estimates of the emission per animal and per unit feed intake and in their extrapolation to national and global emission inventories, while noting also some of the inherent uncertainties.
Abstract: Over the past three centuries, the atmospheric methane burden has grown 2.5-fold, reaching levels unprecedented in at least 650 000 years. Agricultural expansion has played a large part in this anthropogenic signal, with enterically fermented methane emitted by farmed ruminant livestock accounting for about one quarter of all anthropogenic emissions. This paper summarises the range of measurements that give confidence in estimates of the emission per animal and per unit feed intake and in their extrapolation to national and global emission inventories, while noting also some of the inherent uncertainties. Global emissions are discussed in the context of the evolving global methane cycle.

Journal ArticleDOI
TL;DR: Methane emissions by plant communities in alpine ecosystems in the Qinghai–Tibet Plateau are reported through long-term field observations from June 2003 to July 2006 using a closed chamber technique, with important implications with regard to the regional methane budget and species-level difference should be considered when assessing methane emissions by plants.
Abstract: For the first time to our knowledge, we report here methane emissions by plant communities in alpine ecosystems in the Qinghai-Tibet Plateau. This has been achieved through long-term field observations from June 2003 to July 2006 using a closed chamber technique. Strong methane emission at the rate of 26.2 +/- 1.2 and 7.8 +/- 1.1 mu g CH(4) m(-2) h(-1) was observed for a grass community in a Kobresia humilis meadow and a Potentilla fruticosa meadow, respectively. A shrub community in the Potentilla meadow consumed atmospheric methane at the rate of 5.8 +/- 1.3 mu g CH(4) m(-2) h(-1) on a regional basis; plants from alpine meadows contribute at least 0.13 Tg CH(4) yr(-1) in the Tibetan Plateau. This finding has important implications with regard to the regional methane budget and species-level difference should be considered when assessing methane emissions by plants.

Journal ArticleDOI
TL;DR: In this article, the relation between acoustic sea-floor backscatter and seep distribution was examined by integrating multibeam and side-scan sonar recordings, high-resolution 5 kHz seismic data, pore-water analysis, grain-size analysis and visual sea floor observations.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of soil warming and water table manipulations on methane cycling in a field mesocosm experiment in northern Minnesota, USA, where large intact soil monoliths removed from a bog and fen received infrared warming treatments crossed with water table treatments for 6 years.
Abstract: [1] Boreal peatlands contain a large portion of the Earth's terrestrial organic carbon and may be particularly vulnerable to changes in climate. Temperatures in boreal regions are predicted to increase during the twenty-first century which may accelerate changes in soil microbial processes and plant community dynamics. In particular, climate-driven changes in plant community composition might affect the pathways and rates of methanogenesis, the plant-mediated emission of methane, and the scavenging of methane by methanotrophic bacteria. Climate change may also affect methane cycling through changes in pore water chemistry. To date, these feedbacks have not been incorporated into the carbon cycling components of climate models. We investigated the effects of soil warming and water table manipulations on methane cycling in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and fen received infrared warming treatments crossed with water table treatments for 6 years. In years 5 and 6, concentrations, fluxes, and isotopic compositions of methane were measured along with aboveground and belowground net primary productivity and pore water concentrations of acetate, sulfate, ammonium, nitrate, and dissolved organic carbon. Water table level was the dominant control over methane flux in the fen mesocosms, likely through its effect on methane oxidation rates. However, pore water chemistry and plant productivity were important secondary factors in explaining methane flux in the fen mesocosms, and these factors appeared to be the predominant controls over methane flux in the bog mesocosms. The water table and IR treatments had large effects on pore water chemistry and plant productivity, so the indirect effects of climate change appear to be just as important as the direct effects of changing temperature and water table level in controlling future methane fluxes from northern peatlands. Pore water sulfate, ammonium, nitrate, and acetate had a relatively consistent negative relationship with methane emissions, pore water DOC had a positive relationship with methane emissions, and BNPP had mixed effects. The bog mesocosms had much higher methane emissions and pore water methane concentrations than the fen mesocosms, despite a much lower average water table level and peat that is a poor substrate for methanogenesis. We suggest that the relatively high methane fluxes in the bog mesocosms can be explained through their low concentrations of inhibitory pore water compounds, high concentrations of DOC, and high plant productivity. Stable isotopic data from pore water support acetate fermentation as the principal pathway of methanogenesis in bog mesocosms (mean δ13CH4 = −41.0‰, mean δD-CH4 = −190‰). Fen mesocosms had lower pore water concentrations and emissions of methane than bog mesocosms, despite much higher methane production potentials in fen peat. The methane from the fen mesocosms was isotopically heavy (mean δ13CH4 = −28.9‰, mean δD-CH4 = −140‰), suggesting a strong oxidative sink. This is likely related to the dominance of graminoid vegetation and the associated oxygen transport into the rhizosphere. Our results illustrate the need for a more robust understanding of the multiple feedbacks between climate forcing and plant and microbial feedbacks in the response of northern peatlands to climate change.

Journal ArticleDOI
TL;DR: In this article, the abundance, activity, and temperature response of aerobic methane-oxidizing bacteria were studied in permafrost-affected tundra soils of northeast Siberia.
Abstract: The abundance, activity, and temperature response of aerobic methane-oxidizing bacteria were studied in permafrost-affected tundra soils of northeast Siberia. The soils were characterized by both a high accumulation of organic matter at the surface and high methane concentrations in the water-saturated soils. The methane oxidation rates of up to 835 nmol CH4 h−1 g−1 in the surface soils were similar to the highest values reported so far for natural wetland soils worldwide. The temperature response of methane oxidation was measured during short incubations and revealed maximum rates between 22 °C and 28 °C. The active methanotrophic community was characterized by its phospholipid fatty acid (PLFA) concentrations and with stable isotope probing (SIP). Concentrations of 16:1ω8 and 18:1ω8 PLFAs, specific to methanotrophic bacteria, correlated significantly with the potential methane oxidation rates. In all soils, distinct 16:1 PLFAs were dominant, indicating a predominance of type I methanotrophs. However, long-term incubation of soil samples at 0 °C and 22 °C demonstrated a shift in the composition of the active community with rising temperatures. At 0 °C, only the concentrations of 16:1 PLFAs increased and those of 18:1 PLFAs decreased, whereas the opposite was true at 22 °C. Similarly, SIP with 13CH4 showed a temperature-dependent pattern. When the soils were incubated at 0 °C, most of the incorporated label (83%) was found in 16:1 PLFAs and only 2% in 18:1 PLFAs. In soils incubated at 22 °C, almost equal amounts of 13C label were incorporated into 16:1 PLFAs and 18:1 PLFAs (33% and 36%, respectively). We concluded that the highly active methane-oxidizing community in cold permafrost-affected soils was dominated by type I methanotrophs under in situ conditions. However, rising temperatures, as predicted for the future, seem to increase the importance of type II methanotrophs, which may affect methane cycling in northern wetlands.

Journal ArticleDOI
TL;DR: In this paper, the effects of morpho-physiological characteristics of rice (Oryza sativa L.) plants on methane emission from paddy fields were investigated. And the results showed that higher vegetative growth with high methane transport capacity may positively contribute to higher methane emission.

Journal ArticleDOI
TL;DR: In this paper, the IAP RAS CM has been supplemented with a module of soil thermal physics and the methane cycle, which takes into account the response of methane emissions from wetland ecosystems to climate changes.
Abstract: The climate model of the Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) has been supplemented with a module of soil thermal physics and the methane cycle, which takes into account the response of methane emissions from wetland ecosystems to climate changes. Methane emissions are allowed only from unfrozen top layers of the soil, with an additional constraint in the depth of the simulated layer. All wetland ecosystems are assumed to be water-saturated. The molar amount of the meth- ane oxidized in the atmosphere is added to the simulated atmospheric concentration of CO 2 . A control prein- dustrial experiment and a series of numerical experiments for the 17th-21st centuries were conducted with the model forced by greenhouse gases and tropospheric sulfate aerosols. It is shown that the IAP RAS CM gener- ally reproduces preindustrial and current characteristics of both seasonal thawing/freezing of the soil and the methane cycle. During global warming in the 21st century, the permafrost area is reduced by four million square kilo- meters. By the end of the 21st century, methane emissions from wetland ecosystems amount to 130-140 Mt CH 4 /year for the preindustrial and current period increase to 170-200 MtCH 4 /year . In the aggressive anthropogenic forc- ing scenario A2, the atmospheric methane concentration grows steadily to ≈ 3900 ppb. In more moderate scenarios A1B and B1, the methane concentration increases until the mid-21st century, reaching ≈ 2100-2400 ppb, and then decreases. Methane oxidation in air results in a slight additional growth of the atmospheric concentration of carbon dioxide. Allowance for the interaction between processes in wetland ecosystems and the methane cycle in the IAP RAS CM leads to an additional atmospheric methane increase of 10-20% depending on the anthro- pogenic forcing scenario and the time. The causes of this additional increase are the temperature dependence of integral methane production and the longer duration of a warm period in the soil. However, the resulting enhancement of the instantaneous greenhouse radiative forcing of atmospheric methane and an increase in the mean surface air temperature are small (globally < 0.1 W/m 2 and 0.05 K, respectively).

Journal ArticleDOI
01 Mar 2008
TL;DR: In this article, a wider class of geologic sources of methane exist which could have played a role in past climate changes, including mud volcanism, micro-seepage and geothermal flux.
Abstract: The “methane-led hypotheses” assume that gas hydrates and marine seeps are the sole geologic factors controlling Quaternary atmospheric and climate changes. Nevertheless, a wider class of geologic sources of methane exist which could have played a role in past climate changes. Beyond offshore seepage, relevant geologic emissions of methane (GEM) are from onshore seepage, including mud volcanism, microseepage and geothermal flux; altogether GEM are the second most important natural source of atmospheric methane at present. The amount of methane entering the atmosphere from onshore GEM seems to prevail on that from offshore seepage. Onshore sources inject a predominantly isotopically heavy (13C-enriched) methane into the atmosphere. They are controlled mainly by endogenic (geodynamic) processes, which induce large-scale gas flow variations over geologic and millennial time scales, and only partially by exogenic (surface) conditions, so that they are not affected by negative feedbacks. The eventual influence on atmospheric methane concentration does not necessarily require catastrophic or abrupt releases, as proposed for the “clathrate gun hypothesis”. Enhanced degassing from these sources could have contributed to the methane trends observed in the ice core records, and could explain the late Quaternary peaks of increased methane concentrations accompanied by the enrichment of isotopically heavy methane, as recently observed. This hypothesis shall be tested by means of robust multidisciplinary studies, mainly based on a series of atmospheric, biologic and geologic proxies.

Journal ArticleDOI
TL;DR: In this paper, the stock and residence time of subsurface CH4 stocks were investigated in peatland pore waters of a poor fen near Quebec City, Canada.
Abstract: [1] Peatlands are large natural sources of atmospheric methane (CH4). While many studies have measured CH4 emissions to the atmosphere, less is known about the stock and residence time of subsurface CH4. In this study we examined dissolved CH4 concentration in near-surface peatland pore waters of a poor fen near Quebec City, Canada, in order to (1) investigate the variability in and potential controls on these concentrations and (2) combine measured dissolved CH4 concentration with estimated bubble CH4 stock and measured CH4 fluxes to estimate the mean residence time of subsurface CH4. Concentrations ranged from 1 to 450 μM during both study seasons. Depth profiles were generally consistent at one location within the peatland throughout the sampling period but varied between locations. Patterns with depth were not well correlated to pore water pH or EC; however, changes in CH4 concentration through time in the upper 30 cm were related to temperature and water table at some locations. Depth profiles taken at 2- to 5-cm intervals revealed discrete concentration “spikes” which were often maintained throughout the season and are likely related to bubble CH4 dynamics. Estimated subsurface CH4 stocks indicate that even when relatively low bubble volume (5% of peat volume) is assumed, bubble CH4 accounted for greater than half of total stocks. Calculated mean residence times were 28–120 days. This implies that CH4 flux may lag changes in water table and temperature which happen on shorter timescales (hours or days). To improve our description of subsurface CH4 stocks, links between dissolved and bubble CH4 stocks and peatland CH4 residence time, coincident measurement of pore water CH4 concentrations, entrapped gas content and composition, diffusive CH4 flux, and ebullition are required.