scispace - formally typeset
Search or ask a question

Showing papers on "BALB/c published in 2013"


Journal ArticleDOI
TL;DR: The data show that genetically modified live attenuated Ldp27−/− parasites are safe, induce protective immunity even in the absence of parasites, and can provide protection against homologous and heterologous Leishmania species.
Abstract: Leishmaniasis causes significant morbidity and mortality worldwide, and no vaccines against this disease are available Previously, we had shown that the amastigote-specific protein p27 (Ldp27) is a component of an active cytochrome c oxidase complex in Leishmania donovani and that upon deletion of its gene the parasite had reduced virulence in vivo In this study, we have shown that Ldp27−/− parasites do not survive beyond 20 wk in BALB/c mice and hence are safe as an immunogen Upon virulent challenge, mice 12 wk postimmunization showed significantly lower parasite burden in the liver and spleen When mice were challenged 20 wk postimmunization, a significant reduction in parasite burden was still noted, suggesting long-term protection by Ldp27−/− immunization Immunization with Ldp27−/− induced both pro- and anti-inflammatory cytokine responses and activated splenocytes for enhanced leishmanicidal activity in association with NO production Protection in both short- and long-term immunized mice after challenge with the wild-type parasite correlated with the stimulation of multifunctional Th1-type CD4 and CD8 T cells Adoptive transfer of T cells from long-term immunized mice conferred protection against virulent challenge in naive recipient mice, suggesting involvement of memory T cell response in protection against Leishmania infection Immunization of mice with Ldp27−/−also demonstrated cross-protection against Leishmania major and Leishmania braziliensis infection Our data show that genetically modified live attenuated Ldp27−/− parasites are safe, induce protective immunity even in the absence of parasites, and can provide protection against homologous and heterologous Leishmania species

89 citations


Journal ArticleDOI
TL;DR: The data suggest that EA can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt, Shh and Notch pathways, and suggest that the use of EA would be beneficial for the management of pancreaticcancer.

82 citations


Journal ArticleDOI
TL;DR: The results indicated that imidacloprid has immunosuppressive effects at doses >5mg/kg, which could potentially be attributed to direct cytotoxic effects of IMD against T cells (particularly TH cells) and that long-term exposure could be detrimental to the immune system.

68 citations


Journal ArticleDOI
TL;DR: The findings indicate that improved infection control of chronic wounds reduces the inflammatory response and may improve healing, as well as establishing a chronic PA biofilm infection in mice.
Abstract: Chronic wounds are presumed to persist in the inflammatory state, preventing healing. Emerging evidence indicates a clinical impact of bacterial biofilms in soft tissues, including Pseudomonas aeruginosa (PA) biofilms. To further investigate this, we developed a chronic PA biofilm wound infection model in C3H/HeN and BALB/c mice. The chronic wound was established by an injection of seaweed alginate-embedded P. aeruginosa PAO1 beneath a third-degree thermal lesion providing full thickness skin necrosis, as in human chronic wounds. Cultures revealed growth of PA, and both alginate with or without PAO1 generated a polymorphonuclear-dominated inflammation early after infection. However, both at days 4 and 7, there were a more acute polymorphonuclear-dominated and higher degree of inflammation in the PAO1 containing group (p < 0.05). Furthermore, PNA-FISH and supplemented DAPI staining showed bacteria organized in clusters, resembling biofilms, and inflammation located adjacent to the PA. The chronic wound infection showed a higher number of PAO1 in the BALB/c mice at day 4 after infection as compared to C3H/HeN mice (p < 0.006). In addition, a higher concentration of interleukin-1beta in the chronic wounds of BALB/c mice was observed at day 7 (p < 0.02), despite a similar number of bacteria in the two mouse strains. The present study succeeded in establishing a chronic PA biofilm infection in mice. The results showed an aggravating impact of local inflammation induced by PA biofilms. In conclusion, our findings indicate that improved infection control of chronic wounds reduces the inflammatory response and may improve healing.

65 citations


Journal ArticleDOI
TL;DR: The results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and suggest that Balb/c strain, due to greater penetration of N Ir through skin and fur, provides a clearer model of protection than the C57BL/6 strain.
Abstract: We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson’s disease. The present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility. Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and the number of TH+ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results showed higher numbers of TH+ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group. Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the pigmented C57BL/6, compared to the albino Balb/c mice. In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and suggest that Balb/c strain, due to greater penetration of NIr through skin and fur, provides a clearer model of protection than the C57BL/6 strain.

60 citations


Journal ArticleDOI
TL;DR: The mouse model used in this work was able to produce Tembusu virus infection and could be useful for elucidating some of the aspects of the pathophysiology of other flavivirus infections and demonstrate, for the first time, that duck TembusU virus is highly neurovirulent in BALB/c mice.
Abstract: Duck Tembusu virus is a member of the Ntaya group in the genus Flavivirus. The virus has been responsible for severe duck egg-drop syndrome in China since 2010. Its emergence and rapid spread have caused great economic loss for the poultry industry. The epidemiology of the virus infection and the potential threat to public health is of great concern because of the infective and zoonotic nature of flaviviruses. In this study, the pathogenicity of duck Tembusu virus in BALB/c mice was investigated. Infected mice developed clinical signs, including loss of appetite, ruffled hair, weight loss, disorientation, blindness and paralysis of hind limbs from six days post- infection following intracerebral inoculation. Morbidity was 100%, with mortality ranging from 20 to 80% in three- to eight-week-old mice. High virus titers were recovered from the brain, and the virus was distributed in several organs. Histologically, there was widespread non-suppurative encephalitis in the brain. Lymphocyte depletion in the spleen was observed, along with fatty degeneration in the liver and kidney. Our results demonstrate, for the first time, that duck Tembusu virus is highly neurovirulent in BALB/c mice. The mouse model used in this work was able to produce Tembusu virus infection and could be useful for elucidating some of the aspects of the pathophysiology of other flavivirus infections.

60 citations


Journal ArticleDOI
TL;DR: Data demonstrate that abrogation of IL-4Rα signaling on DCs is severely detrimental to the host, leading to rapid disease progression, and increased survival of parasites in infected DCs due to reduced killing effector functions.
Abstract: In BALB/c mice, susceptibility to infection with the intracellular parasite Leishmania major is driven largely by the development of T helper 2 (Th2) responses and the production of interleukin (IL)-4 and IL-13, which share a common receptor subunit, the IL-4 receptor alpha chain (IL-4Rα). While IL-4 is the main inducer of Th2 responses, paradoxically, it has been shown that exogenously administered IL-4 can promote dendritic cell (DC) IL-12 production and enhance Th1 development if given early during infection. To further investigate the relevance of biological quantities of IL-4 acting on DCs during in vivo infection, DC specific IL-4Rα deficient (CD11c(cre)IL-4Rα(-/lox)) BALB/c mice were generated by gene targeting and site-specific recombination using the cre/loxP system under control of the cd11c locus. DNA, protein, and functional characterization showed abrogated IL-4Rα expression on dendritic cells and alveolar macrophages in CD11c(cre)IL-4Rα(-/lox) mice. Following infection with L. major, CD11c(cre)IL-4Rα(-/lox) mice became hypersusceptible to disease, presenting earlier and increased footpad swelling, necrosis and parasite burdens, upregulated Th2 cytokine responses and increased type 2 antibody production as well as impaired classical activation of macrophages. Hypersusceptibility in CD11c(cre)IL-4Rα(-/lox) mice was accompanied by a striking increase in parasite burdens in peripheral organs such as the spleen, liver, and even the brain. DCs showed increased parasite loads in CD11c(cre)IL-4Rα(-/lox) mice and reduced iNOS production. IL-4Rα-deficient DCs produced reduced IL-12 but increased IL-10 due to impaired DC instruction, with increased mRNA expression of IL-23p19 and activin A, cytokines previously implicated in promoting Th2 responses. Together, these data demonstrate that abrogation of IL-4Rα signaling on DCs is severely detrimental to the host, leading to rapid disease progression, and increased survival of parasites in infected DCs due to reduced killing effector functions.

57 citations


Journal ArticleDOI
01 Nov 2013-Mbio
TL;DR: Visceral leishmaniasis is a life-threatening systemic disease due to the Leishmania protozoa L. donovani and is ranked by the World Health Organization as the second most important protozoan parasitic disease after malaria for its grave morbidity, high mortality, and global distribution.
Abstract: During visceral leishmaniasis, the control of hepatic parasite burden is mainly due to granuloma assembly in a microenvironment consisting of both Th1 and Th2 components. Using enzyme-linked immunosorbent assay (ELISA) dosages, quantitative PCR (qPCR), immunohistochemistry, and flow cytometry, we studied the role of interleukin-33 (IL-33), a recently described cytokine signaling through the ST2 receptor, during visceral leishmaniasis. We showed that a higher level of IL-33 was detected in the serum of patients with visceral leishmaniasis than in that from healthy donors and demonstrated the presence of IL-33 + cells in a liver biopsy specimen from a patient. Similarly, in BALB/c mice experimentally infected with L. donovani, a higher level of IL-33 was detected in the serum, as well as the presence of IL-33 + cells and ST2 + cells in the mouse liver. In ST2 −/− BALB/c mice, better control of the hepatic parasite burden and reduced hepatomegaly were observed. This was associated with strong induction of Th1 cytokines (gamma interferon [IFN-γ] and IL-12) compared to the level in wild-type (WT) mice and better recruitment of myeloid cells associated with strongly induced chemokines (CCL2 and CXCL2) and receptors (CCR2 and CXCR2). Conversely, BALB/c mice treated twice weekly with recombinant IL-33 showed a dramatically reduced induction of Th1 cytokines and delayed inhibition of monocyte and neutrophil recruitment in the liver, which was associated with reduced KC/CXCL1 and CXCR2 expression. Taken together, our results suggest that IL-33 could be a new deleterious regulator of the hepatic immune response against Leishmania donovani, via the repression of the Th1 response and myeloid cell recruitment. IMPORTANCE Visceral leishmaniasis is a life-threatening systemic disease due to the Leishmania protozoa L. infantum and L. donovani and is ranked by the World Health Organization as the second most important protozoan parasitic disease after malaria for its grave morbidity, high mortality, and global distribution. Leishmania parasites subvert the host’s immune response to propagate to target organs, including the spleen, the bone marrow, and the liver. Control of hepatic parasite burdens depends on a delicate and poorly understood Th1/Th2 immune balance. To better understand this complex immune response, new cytokines are interesting targets for research studies. IL-33 is a newly described cytokine usually associated with Th2 response and involved in different diseases, including infectious diseases and hepatitis. Our results suggest that IL-33 could be a new factor of susceptibility and a potential prognostic marker during visceral leishmaniasis.

53 citations


Journal ArticleDOI
TL;DR: It is suggested that biodegradable protamine-based nanoparticles with CpG-ODN counteract the Th2-dominated immune response induced by an allergen and therefore are suitable as novel carrier system for immunotherapy of allergy.

50 citations


Journal ArticleDOI
TL;DR: This is the first study to show that oral administration of the effective probiotic LGG to Giardia infected mice could be used as a bacterio-therapy that restores the normal gut microflora and modulates the mucosal immune response.
Abstract: Gut homeostasis can be altered by the oral administration of health-promoting microorganisms, namely probiotics that are known to reinforce the host immune response. The aim of this study was to elucidate the immunomodulatory effect of orally administered probiotic Lactobacillus rhamnosus GG (LGG) in Giardia-infected mice. BALB/c mice were fed orally with probiotic LGG either 7 days prior to or simultaneously with the challenge dose of Giardia trophozoites. The administration of the probiotic was continued for 25 days, and immunomodulatory potentials in terms of secretory immunoglobulin A (IgA) levels, CD8+ and CD4+ T lymphocytes, and expression of pro-inflammatory [tumor necrosis factor-alpha, interferon-gamma (INF-γ)] and anti-inflammatory cytokines [interleukin (IL)-4, IL-6, IL-10] were studied. Oral feeding of LGG prior to or simultaneously with the test dose of Giardia seems to have modulated both arms (humoral and cellular) of the mucosal immune system since a significant increase in the levels of specific secretory IgA antibody, IgA+ cells, and CD4+ T lymphocytes were observed in contrast with the decreased percentage of cytotoxic CD8+ T lymphocytes. The stimulated mucosal immune response in probiotic fed Giardia-infected mice was further correlated with the enhanced levels of anti-inflammatory cytokines IL-6 and IL-10 and reduced levels of pro-inflammatory cytokine INF-γ. This is the first study to show that oral administration of the effective probiotic LGG to Giardia infected mice could be used as a bacterio-therapy that restores the normal gut microflora and modulates the mucosal immune response.

46 citations


Journal ArticleDOI
TL;DR: The results indicated that simple DOTAP nanoliposome containing 1μg/μl SLA are appropriate delivery systems to induce a Th1 type of immune response and protection against L. major infection in BALB/c mice.

Journal ArticleDOI
Yan Zhang1, Jun Cao1, Yan Chen1, Ping Chen1, Hong Peng1, Shan Cai1, Hong Luo1, Shang-jie Wu1 
TL;DR: Intraperitoneal injection of CSE produced emphysema, pulmonary parenchymal apoptosis, and injury of cardiac and skeletal muscles in mice, and all pathobiologically relevant mechanisms in this model are shared with the COPD patients.
Abstract: Background: Chronic obstructive pulmonary disease (COPD) is a chronic, progressive, airway disease. In order to recognize mechanisms of COPD, various types of COPD animal models have been established, and the pathogenesis are different. The present study was designed to establish a COPD animal model by intraperitoneal injection of cigarette smoke extract (CSE) in BALB/C mice. Methods: Mice were injected intraperitoneally with PBS/CSE and sacrificed at day 28. Pulmonary function, pathology of lung tissue, morphology of hearts and skeletal muscle, leukocytes count and antioxidant activity of bronchoalveolar lavage fluid (BALF), pulmonary parenchymal apoptosis index (AI), expression of cleaved caspase-3, expression of MMP-2 and MMP-9 mRNA, and activity of MMP-2 and MMP-9 in lung tissue were measured. Results: Intraperitoneal injection of CSE induced pulmonary parenchymal destruction, pulmonary function reduction, leukocytes count, injury of cardiac and peripheral muscles, and increased pulmonary pare...

Journal ArticleDOI
05 Apr 2013-PLOS ONE
TL;DR: 17β-estradiol and IL-6 may act synergistically to promote sex bias in experimental DILI by reducing Tregs and modulating Treg numbers may provide a therapeutic approach to DILi.
Abstract: Background and Aims Immune-mediated, drug-induced liver injury (DILI) triggered by drug haptens is more prevalent in women than in men. However, mechanisms responsible for this sex bias are not clear. Immune regulation by CD4+CD25+FoxP3+ regulatory T-cells (Tregs) and 17β-estradiol is crucial in the pathogenesis of sex bias in cancer and autoimmunity. Therefore, we investigated their role in a mouse model of immune-mediated DILI. Methods To model DILI, we immunized BALB/c, BALB/cBy, IL-6–deficient, and castrated BALB/c mice with trifluoroacetyl chloride-haptenated liver proteins. We then measured degree of hepatitis, cytokines, antibodies, and Treg and splenocyte function. Results BALB/c females developed more severe hepatitis (p<0.01) and produced more pro-inflammatory hepatic cytokines and antibodies (p<0.05) than did males. Castrated males developed more severe hepatitis than did intact males (p<0.001) and females (p<0.05). Splenocytes cultured from female mice exhibited fewer Tregs (p<0.01) and higher IL-1β (p<0.01) and IL-6 (p<0.05) than did those from males. However, Treg function did not differ by sex, as evidenced by absence of sex bias in programmed death receptor-1 and responses to IL-6, anti-IL-10, anti-CD3, and anti-CD28. Diminished hepatitis in IL-6-deficient, anti-IL-6 receptor α-treated, ovariectomized, or male mice; undetectable IL-6 levels in splenocyte supernatants from ovariectomized and male mice; elevated splenic IL-6 and serum estrogen levels in castrated male mice, and IL-6 induction by 17β-estradiol in splenocytes from naive female mice (p<0.05) suggested that 17β-estradiol may enhance sex bias through IL-6 induction, which subsequently discourages Treg survival. Treg transfer from naive female mice to those with DILI reduced hepatitis severity and hepatic IL-6. Conclusions 17β-estradiol and IL-6 may act synergistically to promote sex bias in experimental DILI by reducing Tregs. Modulating Treg numbers may provide a therapeutic approach to DILI.

Journal ArticleDOI
TL;DR: It is demonstrated that this DNA prime and peptide boost immunization protocol encoding the TgGRA4 can elicit the highest level of humoral and cellular immune responses compared to other immunized groups, which is a promising approach to increase the efficacy of DNA immunization.
Abstract: Toxoplasma gondii is a widespread intracellular parasite, which infects most vertebrate animal hosts and causes zoonotic infection in humans. Vaccine strategy remains a promising method for the prevention and control of toxoplasmosis. T. gondii GRA4 protein has been identified as a potential candidate for vaccine development. In our study, we evaluated the immune response induced by four different immunization vaccination strategies encoding TgGRA4. BALB/c mice were intramuscularly (i.m.) immunized four times according to specific immunization schedules. Generally, mice in experimental groups were immunized with polypeptide, pGRA4, peptide/DNA, or DNA/peptide, and mice in the control groups were injected with PBS or pEGFP. After immunization, the levels of IgG antibodies and cytokine productions were determined by enzyme-linked immunosorbent assays (ELISA). The survival time of mice was also evaluated after challenge infection with the highly virulent T. gondii RH strain. The results showed that mice vaccinated with different immunization regimens (polypeptide, pGRA4, peptide/DNA, or DNA/peptide) elicited specific humoral and cellular responses, with high levels of total IgG, IgG2a isotype and gamma interferon (IFN-γ), which suggested a specific Th1 immunity was activated. After lethal challenge, an increased survival time was observed in immunized mice (11.8 ± 4.8 days) compared to the control groups injected with PBS or pEGFP (P 0.05). These results demonstrated that this DNA prime and peptide boost immunization protocol encoding the TgGRA4 can elicit the highest level of humoral and cellular immune responses compared to other immunized groups, which is a promising approach to increase the efficacy of DNA immunization.

Journal ArticleDOI
21 Jan 2013-PLOS ONE
TL;DR: B/cAnN and C57BL/6N mice appear to be particularly suitable for the investigation of glomerular function using MPM.
Abstract: Multiphoton microscopy (MPM) offers a unique approach for addressing both the function and structure of an organ in near-real time in the live animal. The method however is limited by the tissue-specific penetration depth of the excitation laser. In the kidney, structures in the range of 100 µm from the surface are accessible for MPM. This limitation of MPM aggravates the investigation of the function of structures located deeper in the renal cortex, like the glomerulus and the juxtaglomerular apparatus. In view of the relevance of gene-targeted mice for investigating the function of these structures, we aimed to identify a mouse strain with a high percentage of superficially located glomeruli. The mean distance of the 30 most superficial glomeruli from the kidney surface was determined in 10 commonly used mouse strains. The mean depth of glomeruli was 118.4±3.4, 123.0±2.7, 133.7±3.0, 132.3±2.6, 141.0±4.0, 145.3±4.3, 148.9±4.2, 151.6±2.7, 167.7±3.9, and 207.8±3.2 µm in kidney sections from 4-week-old C3H/HeN, BALB/cAnN, SJL/J, C57BL/6N, DBA/2N, CD1 (CRI), 129S2/SvPas, CB6F1, FVB/N and NMRI (Han) mice, respectively (n = 5 animals from each strain). The mean distance from the kidney surface of the most superficial glomeruli was significantly lower in the strains C3H/HeN Crl, BALB/cAnN, DBA/2NCrl, and C57BL/6N when compared to a peer group consisting of all the other strains (p<.0001). In 10-week-old mice, the most superficial glomeruli were located deeper in the cortex when compared to 4-week-old animals, with BALB/cAnN and C57BL/6N being the strains with the highest percentage of superficial glomeruli (25% percentile 116.7 and 121.9 µm, respectively). In summary, due to significantly more superficial glomeruli compared to other commonly used strains, BALB/cAnN and C57BL/6N mice appear to be particularly suitable for the investigation of glomerular function using MPM.

Journal ArticleDOI
TL;DR: In this article, the authors compared AD-MSCs conditioned media (CM) from BALB/c, C57BL/6, and DBA mouse strains, and showed that the immunomodulatory properties of mouse ADMSCs are strain-dependent and should be considered during selection of appropriate stem cell source for in vivo experiments and stem cell therapy strategies.
Abstract: Adipose tissue-derived mesenchymal stem cells (AD-MSCs) have been shown to be capable of differentiating into multiple cell type and exert immunomodulatory effects. Since the selection of ideal stem cell is apparently crucial for the outcome of experimental stem cell therapies, therefore, in this study we compared AD-MSCs conditioned media (CM) from BALB/c, C57BL/6, and DBA mouse strains. No significant difference was found in the morphology, cell surface markers, in vitro differentiation and proliferation potentials of AD-MSCs isolated from C57BL/6, BALB/c, and DBA mice. The immunological assays showed some variation among the strains in the cytokines, nitric oxide (NO), and indoleamine 2,3-dioxygenase (IDO) production and immunomodulatory effects on splenocytes functions. Our results indicated a suppression of splenocytes proliferation in the presence of AD-MSC CM from the three inbred mouse strains. However, BALB/c CM exerted a higher suppression of splenocytes proliferation. AD-MSCs isolated from C57BL/6 and BALB/c mice produced higher levels of TGF-β than those from DBA mice. Furthermore, IL-17 and IDO production was higher in AD-MSCs isolated from BALB/c mice. Our results indicated an increased production of TGF-β, IL-4, IL-10, NO, and IDO by splenocytes in response to CM from BALB/c AD-MSCs. In conclusion, our results showed that the immunomodulatory properties of mouse AD-MSCs is strain-dependent and this variation should be considered during selection of appropriate stem cell source for in vivo experiments and stem cell therapy strategies.

Journal ArticleDOI
TL;DR: These studies do not reveal serious toxicities that would preclude a clinical trial of EE-TP in patients with MNGIE, but caution should be taken for infusion-related reactions that may be related to the production of nonspecific antibodies or a cell-based immune response.

Journal ArticleDOI
TL;DR: Results presented in this study suggest that ROP8 DNA is a promising and potential vaccine candidate against toxoplasmosis.
Abstract: Toxoplasmosis in humans and other animals is caused by the protozoan parasite Toxoplasma gondii. During the process of host cell invasion and parasitophorous vacuole formation by the tachyzoites, the parasite secretes Rhoptry protein 8 (ROP8), an apical secretory organelle. Thus, ROP8 is an important protein for the pathogenesis of T. gondii. The ROP8 DNA was constructed into a pVAX-1 vaccine vector and used for immunizing BALB/c mice. Immunized mice developed immune response characterized by significant antibody responses, antigen-specific prolifer- ation of spleen cells, and production of high levels of IFN-g (816 ± 26.3 pg/mL). Challenge experiments showed significant levels of increase in the survival period (29 days compared with 9 days in control) in ROP8 DNA vaccinated mice after a lethal challenge with T. gondii. Results presented in this study suggest that ROP8 DNA is a promising and potential vaccine candidate against toxoplasmosis.

Journal ArticleDOI
TL;DR: Data suggest that T. gondii microneme protein 11 is a reasonable vaccine candidate deserving further studies, and pcDNA/MIC11 is a potential strategy for the control of toxoplasmosis.
Abstract: Toxoplasma gondii is one of the most prevalent intracellular parasites and is threatening the health of both humans and animals, therefore causing incalculable economic losses worldwide. Vaccination is thought to be an efficient way of controlling toxoplasmosis. T. gondii microneme protein 11 (MIC11) is a soluble microneme protein which is presumably considered facilitating the early stage of cell invasion. To evaluate the protective efficacy of T. gondii MIC11, in the present study, a new DNA vaccine-encoding the α-chain of T. gondii MIC11 was constructed using the pcDNA3.1 vector. Expression of MIC11 from this vector was confirmed by indirect immunofluorescence assay following transfection into baby hamster kidney (BHK) cells. Intramuscular immunization of BALB/c mice with pcDNA/MIC11 was carried out to evaluate the immune responses by serum antibodies titers, lymphoproliferation assay, and cytokines assay. The protective efficacy was evaluated by survival rate in mice after challenging with highly virulent strain of T. gondii. The results demonstrated that this vaccination elicited significant humoral responses and T. gondii lysate antigen (TLA)-stimulated lymphoproliferation (p 0.05), indicating that a predominant Th1 type response was developed. The vaccination also increased the survival rate of immunized mice when they were challenged with a lethal dose of tachyzoites of T. gondii RH strain. These data suggest that T. gondii MIC11 is a reasonable vaccine candidate deserving further studies, and pcDNA/MIC11 is a potential strategy for the control of toxoplasmosis.

Journal Article
01 Jan 2013-Cell
TL;DR: The results show that macrophages from different genetic backgrounds respond differently to the same stimulus in aspects of type, intensity, and time of response, which will enable researchers to use correct treatment programs for immune-regulation or immunotherapy.

Journal ArticleDOI
TL;DR: Results showed that cell-mediated, humoral immunity, and non-specific immune function in the high-dose ATZ group were suppressed; NO release and interferon-γ(IFN-γ)/interleukin-4 (IL-4) were also significantly decreased in thehigh-dose group.
Abstract: The present study was designed to investigate the immunotoxicity of atrazine (ATZ) in male Balb/c mice. ATZ (175, 87.5, and 43.75 mg/kg bw/day) was administered by gavage method for 28 days. The following indexes were determined in various groups of mice: body and organ weight; antibody aggregation of serum hemolysin; proliferative response of splenocytes to ConA; delayed-type hypersensitivity (DTH); natural killer cell activity; clearance of neutral red and nitric oxide (NO) release from peritoneal macrophages; apostosis and necrosis of splenocytes and thymocytes; cytokine production; and serum lysozyme. Results showed that cell-mediated, humoral immunity, and non-specific immune function in the high-dose ATZ group were suppressed; NO release and interferon-γ(IFN-γ)/interleukin-4 (IL-4) were also significantly decreased in the high-dose group. In the medium-dose group, the proliferation response and IFN-γ production was significantly decreased. In the low-dose group, the proliferation response was signif...

Journal Article
TL;DR: A restore of lymphocytes which was observed after SeNPs supplementation in irradiated mice can be highly interesting and provide cellular immunity against malignant diseases or other bacterial or fungal infections after radiotherapy.
Abstract: Background: Radiation therapy is an effective method used for treatment of many types of cancers. However, this method can cause unwanted side effects such as bone marrow suppression. In this study, the effect of oral administration of biogenic selenium nanoparticles (SeNPs) on total and differentiated white cells profile of BALB/c mice exposed to X-ray radiation was investigated and compared with non-irradiated mice. Methods: Sixty female BALB/c mice between six to eight weeks olds were divided into 4 test and control groups in two categories of normal and irradiated mice. In normal mice SeNPs administration was started from the day 0 and followed for a month. Irradiated mice were divided into three groups and were exposed to doses of 2, 4 and 8 Gy. After 72 hr of irradiation, the SeNPs treatment was started and continued for a month. Total and differentiated blood cells counts of both irradiated and non-irradiated groups were monitored during 30 days and the obtained results were compared. Also, the deposition of Se in different tissues and blood serum of normal mice was determined in normal mice after 30 days period of supplementation. Results: In normal mice an increase in the count of neutrophils was observed after 30 days of supplementation. In irradiated mice, SeNPs supplementation led to increase in both lymphocytes and neutrophils counts especially in mice exposed to 2 and 4 Gys radiation. Conclusion: Radiotherapy is categorized as an invasive method which can cause tissue damage and suppress the host immune defense. A restore of lymphocytes which was observed after SeNPs supplementation in irradiated mice can be highly interesting and provide cellular immunity against malignant diseases or other bacterial or fungal infections after radiotherapy.

Journal ArticleDOI
TL;DR: Experiments explored whether C57Bl/6J (B6) and ICR mouse strains prefer D-cycloserine-treated to vehicle-treated Balb/c stimulus mice in a paradigm that evaluated social preference and showed that B6 mice prefer D/c mice to vehicles, suggesting that treatment could have resulted in normalization of "emitted" social cues.

Journal ArticleDOI
TL;DR: In stress-susceptible BALB/C mice the novel anxiolytic afobazole, 5mg/kg, selectively mitigates trait anxiety; however it does not change the behavioral response in stress-resilient C57Bl/6N mice.

Journal ArticleDOI
TL;DR: CRP/oxLDL/β2GPI complex aggravated AS in diabetic BALB/c mice by increasing lipid uptake, the mechanism of which may be mediated by the p38MAPK signal pathway.
Abstract: Background The aim of this study was to investigate the effect of C-reactive protein/oxidised low-density lipoprotein/β2-glycoprotein I (CRP/oxLDL/β2GPI) complex on atherosclerosis (AS) in diabetic BALB/c mice.

Journal ArticleDOI
Min Zhang1, Lingxiao Zhao1, Jing Song1, Ying Li1, Qunli Zhao1, Shenyi He1, Hua Cong1 
23 Sep 2013-Vaccine
TL;DR: Results implied that immunization with DNA vaccines expressing SAG2C, S AG2D, and SAG 2X, and, in particular, a combination of all three DNA plasmids, could effectively protect the mice against T. gondii chronic infection.

Journal ArticleDOI
TL;DR: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells.
Abstract: Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells.

Journal ArticleDOI
TL;DR: It is concluded that only the inflammatory phenotype of more radiosensitive macrophages is reduced by LDR and that ex vivo and in vivo models with primary cells should be applied to examine how the immune system is modulated by L DR.
Abstract: Since the beginning of the 20th century, low dose radiotherapy (LD-RT) has been practiced and established as therapy of inflammatory diseases. Several clinical studies already have proven the anti-inflammatory effect of low doses of ionizing irradiation (LDR). However, further research is inevitable to reveal the underlying immune-biological mechanisms. Focus has been set on the modulation of activated macrophages by LDR, since they participate in both, initiation and resolution of inflammation. Here we examined with an ex vivo peritoneal mouse macrophage model how LDR modulates the secretion of the inflammatory cytokines IL-1β and TNF-α by activated macrophages and whether the basal radiosensitivity of the immune cells has influence on it. Peritoneal macrophages of Balb/c mice responded to exposure of 0.5 or 0.7 Gy of ionizing irradiation (X-ray) with significant decreased release of IL-1β and slightly, but not significantly, reduced release of TNF-α. Macrophages of the less radiosensitive C57BL/6 mice did not show this anti-inflammatory reaction. This was observed in both wild type and human TNF-α transgenic animals with C57BL/6 background. We conclude that only the inflammatory phenotype of more radiosensitive macrophages is reduced by LDR and that ex vivo and in vivo models with primary cells should be applied to examine how the immune system is modulated by LDR.

Journal ArticleDOI
TL;DR: The biological properties of PEITC can promote immune responses in normal and WEHI‐3 leukemia mice in vivo, and also promoted the NK cell cytotoxic activity in comparison with the group of leukemia mice.
Abstract: Enhanced cruciferous vegetable consumption is associated with the reduction of cancer incidence as shown in epidemiological studies. Phenethyl isothiocyanate (PEITC), one of the important compounds in cruciferous vegetables, has been shown to induce apoptosis in many types of human cancer cell lines, but there is no available information addressing the effects on normal and leukemia mice in vivo. The purpose of this study is to focus on the in vivo effects of PEITC on immune responses of normal and WEHI-3 leukemia BALB/c mice in vivo. Influences of PEITC on BALB/c mice after intraperitoneal (i.p.) injection with WEHI-3 cells and normal mice were investigated. In normal BALB/c mice, PEITC did not affect the body weight when compared to the olive oil treated animals. Moreover, PEITC promoted phagocytosis by macrophages from peripheral blood mononuclear cells (PBMC) and peritoneal cavity, increased the levels of CD11b and Mac-3, decreased the level of CD19 and promoted natural killer (NK) cell cytotoxic activity, but it did not alter the level of CD3. Also, PEITC enhanced T cell proliferation after concanavalin A (Con A) stimulation. Otherwise, PEITC increased the body weight, but decreased the weight of liver and spleen as compared to the olive oil-treated WEHI-3 leukemia mice. PEITC also increased the level of CD19, decreased the levels of CD3 and Mac-3 rather than influence in the level of CD11b, suggesting that the differentiation of the precursor of macrophages and T cells was inhibited, but the differentiation of the precursor of B cells was promoted in leukemia mice. Furthermore, PEITC enhanced phagocytosis by monocytes and macrophages from PBMC and peritoneal cavity, and also promoted the NK cell cytotoxic activity in comparison with the group of leukemia mice. Based on these observations, the biological properties of PEITC can promote immune responses in normal and WEHI-3 leukemia mice in vivo. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.

Journal ArticleDOI
TL;DR: It is revealed that C57BL/6 (B6) B cells respond to mAb-induced, TLR4-specific signals stronger than BALB/c (BALB) B Cells, as assessed by proliferation and upregulation of CD69 and CD86, and a V254I mutation accounts for the LPS hyporesponsive phenotype of BALB B cells.
Abstract: LPS is recognized by TLR4 and radioprotective 105 kDa in B cells. Susceptibility to LPS in murine B cells is most closely linked to the locus containing the TLR4 gene. However, the molecular mechanism underlying genetic control of LPS sensitivity by this locus has not been fully elucidated. In this study, we revealed that C57BL/6 (B6) B cells respond to mAb-induced, TLR4-specific signals stronger than BALB/c (BALB) B cells, as assessed by proliferation and upregulation of CD69 and CD86. In contrast, BALB B cells were not hyporesponsive to agonistic anti-radioprotective 105 kDa mAb or the TLR9 agonist CpG. Although the level of TLR4 mRNA in BALB B cells was comparable with that in B6 B cells, surface TLR4 expression in BALB B cells was lower than that in B6 B cells. This lower surface expression of BALB TLR4 was also observed when HEK293 and Ba/F3 cells were transfected with a BALB TLR4 expression construct. We identified a V254I mutation as the responsible single nucleotide polymorphism for lower surface expression of BALB TLR4. Furthermore, cotransfection of myeloid differentiation factor-2 increased BALB TLR4 expression, although it was still lower than B6 TLR4 expression. In concordance with reduced expression, Ba/F3 cells transfected with BALB TLR4 and myeloid differentiation factor-2 were hyporesponsive compared with those with B6 TLR4, as assessed by LPS-induced NF-κB activation. In conclusion, we revealed that LPS sensitivity is genetically controlled by the level of surface TLR4 expression on B cells. A V254I mutation accounts for the LPS hyporesponsive phenotype of BALB B cells.