scispace - formally typeset
Search or ask a question

Showing papers on "Ciliogenesis published in 2020"


Journal ArticleDOI
14 Aug 2020-Science
TL;DR: The authors found that neural progenitor cells at the brain's ventricular zone reach out to both the apical and basal surfaces of the neuroepithelial wall, and their cellular nuclei shuttle back and forth as the cell cycle progresses.
Abstract: Although Huntington's disease is a late-manifesting neurodegenerative disorder, both mouse studies and neuroimaging studies of presymptomatic mutation carriers suggest that Huntington's disease might affect neurodevelopment. To determine whether this is actually the case, we examined tissue from human fetuses (13 weeks gestation) that carried the Huntington's disease mutation. These tissues showed clear abnormalities in the developing cortex, including mislocalization of mutant huntingtin and junctional complex proteins, defects in neuroprogenitor cell polarity and differentiation, abnormal ciliogenesis, and changes in mitosis and cell cycle progression. We observed the same phenomena in Huntington's disease mouse embryos, where we linked these abnormalities to defects in interkinetic nuclear migration of progenitor cells. Huntington's disease thus has a neurodevelopmental component and is not solely a degenerative disease.

178 citations


Journal ArticleDOI
TL;DR: What is known about how LRRK2 regulates ciliogenesis, the endosomal–lysosomal system, immune responses and interplay with alpha-synuclein and tau and how this might be linked to Parkinson's' disease is explored.

83 citations


Journal ArticleDOI
TL;DR: The evolution from thinking of satellites as mere facilitators of protein trafficking to the centrosome to thinking of them being key regulators of protein localization and cellular proteostasis for a diverse set of pathways is discussed, making them of broader interest to fields beyond those focused on centrosomes and ciliogenesis.
Abstract: Centriolar satellites are non-membranous cytoplasmic granules that concentrate in the vicinity of the centrosome, the major microtubule-organizing centre (MTOC) in animal cells. Originally assigned as conduits for the transport of proteins towards the centrosome and primary cilium, the complexity of satellites is starting to become apparent. Recent studies defined the satellite proteome and interactomes, placing hundreds of proteins from diverse pathways in association with satellites. In addition, studies on cells lacking satellites have revealed that the centrosome can assemble in their absence, whereas studies on acentriolar cells have demonstrated that satellite assembly is independent from an intact MTOC. A role for satellites in ciliogenesis is well established; however, their contribution to other cellular functions is poorly understood. In this Review, we discuss the developments in our understanding of centriolar satellite assembly and function, and why satellites are rapidly becoming established as governors of multiple cellular processes. We highlight the composition and biogenesis of satellites and what is known about the regulation of these aspects. Furthermore, we discuss the evolution from thinking of satellites as mere facilitators of protein trafficking to the centrosome to thinking of them being key regulators of protein localization and cellular proteostasis for a diverse set of pathways, making them of broader interest to fields beyond those focused on centrosomes and ciliogenesis.

60 citations


Journal ArticleDOI
TL;DR: The data bridge the link between MMAF and PCD based on the association of SPEF2 mutations with both infertility andPCD in males and provide basis for further exploring the molecular mechanism of SP EF2 during spermiogenesis and ciliogenesis.
Abstract: Severe asthenozoospermia is a common cause of male infertility. Recent studies have revealed that SPEF2 mutations lead to multiple morphological abnormalities of the sperm flagella (MMAF) without primary ciliary dyskinesia (PCD) symptoms in males, but PCD phenotype was also found in one female individual. Therefore, whether there is a phenotypic continuum ranging from infertile patients with PCD to MMAF patients with no or low noise PCD manifestations remains elusive. Here, we performed whole-exome sequencing in 47 patients with severe asthenozoospermia from 45 unrelated Chinese families. We identified four novel biallelic mutations in SPEF2 (8.9%, 4/45) in six affected individuals (12.8%, 6/47), while no deleterious biallelic variants in SPEF2 were detected in 637 controls, including 219 with oligoasthenospermia, 195 with non-obstructive azoospermia, and 223 fertile controls. Notably, all six patients exhibited PCD-like symptoms, including recurrent airway infections, bronchitis, and rhinosinusitis. Ultrastructural analysis revealed normal 9 + 2 axonemes of respiratory cilia but consistently abnormal 9 + 0 axoneme or disordered accessory structures of sperm flagella, indicating different roles of SPEF2 in sperm flagella and respiratory cilia. Subsequently, a Spef2 knockout mouse model was used to validate the PCD-like phenotype and male infertility, where the subfertility of female Spef2−/− mice was found unexpectedly. Overall, our data bridge the link between MMAF and PCD based on the association of SPEF2 mutations with both infertility and PCD in males and provide basis for further exploring the molecular mechanism of SPEF2 during spermiogenesis and ciliogenesis.

49 citations


Journal ArticleDOI
TL;DR: An overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking is provided.
Abstract: Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.

49 citations


Journal ArticleDOI
TL;DR: It is shown that PI3KC2α has a role in ciliogenesis and promotes local PI3P production upon shear stress to induce autophagy that is distinct from VPS34-driven starvation-induced autophagic response.
Abstract: Cells subjected to stress situations mobilize specific membranes and proteins to initiate autophagy. Phosphatidylinositol-3-phosphate (PI3P), a crucial lipid in membrane dynamics, is known to be essential in this context. In addition to nutriments deprivation, autophagy is also triggered by fluid-flow induced shear stress in epithelial cells, and this specific autophagic response depends on primary cilium (PC) signaling and leads to cell size regulation. Here we report that PI3KC2α, required for ciliogenesis and PC functions, promotes the synthesis of a local pool of PI3P upon shear stress. We show that PI3KC2α depletion in cells subjected to shear stress abolishes ciliogenesis as well as the autophagy and related cell size regulation. We finally show that PI3KC2α and VPS34, the two main enzymes responsible for PI3P synthesis, have different roles during autophagy, depending on the type of cellular stress: while VPS34 is clearly required for starvation-induced autophagy, PI3KC2α participates only in shear stress-dependent autophagy.

48 citations


Journal ArticleDOI
14 Jan 2020-eLife
TL;DR: It is suggested that primary cilia play an integral role in maintaining the function of PCs in the adult cerebellum and reveal novel insights into mechanisms involved in neurodegeneration.
Abstract: Primary cilia are vital signaling organelles that extend from most types of cells, including neurons and glia. These structures are essential for development of many tissues and organs; however, their function in adult tissues, particularly neurons in the brain, remains largely unknown. Tau tubulin kinase 2 (TTBK2) is a critical regulator of ciliogenesis, and is also mutated in a hereditary neurodegenerative disorder, spinocerebellar ataxia type 11 (SCA11). Here, we show that conditional knockout of Ttbk2 in adult mice results in degenerative cerebellar phenotypes that recapitulate aspects of SCA11 including motor coordination deficits and defects to Purkinje cell (PC) integrity. We also find that the Ttbk2 conditional mutant mice quickly lose cilia throughout the brain. We show that conditional knockout of the key ciliary trafficking gene Ift88 in adult mice results in nearly identical cerebellar phenotypes to those of the Ttbk2 knockout, indicating that disruption of ciliary signaling is a key driver of these phenotypes. Our data suggest that primary cilia play an integral role in maintaining the function of PCs in the adult cerebellum and reveal novel insights into mechanisms involved in neurodegeneration.

48 citations


Journal ArticleDOI
29 Aug 2020-iScience
TL;DR: The structural changes that occur during assembly, tubulin switching from a curved conformation in solution to a straight one in the microtubule core are reviewed and how cryo-EM and X-ray crystallography are complementary methods to characterize the interaction of tubulin with proteins involved either in intracellular transport or in microtubules dynamics regulation is shown.

44 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review the mechanistic basis for these effects on ciliogenesis, which comprise several cellular processes acting in concert at different timescales, including the cell cycle, cellular proteostasis, signaling pathways and structural influences of the actin cytoskeleton.
Abstract: Primary cilia are microtubule-based organelles that extend from the apical surface of most mammalian cells, forming when the basal body (derived from the mother centriole) docks at the apical cell membrane. They act as universal cellular "antennae" in vertebrates that receive and integrate mechanical and chemical signals from the extracellular environment, serving diverse roles in chemo-, mechano- and photo-sensation that control developmental signaling, cell polarity and cell proliferation. Mutations in ciliary genes cause a major group of inherited developmental disorders called ciliopathies. There are very few preventative treatments or new therapeutic interventions that modify disease progression or the long-term outlook of patients with these conditions. Recent work has identified at least four distinct but interrelated cellular processes that regulate cilia formation and maintenance, comprising the cell cycle, cellular proteostasis, signaling pathways and structural influences of the actin cytoskeleton. The actin cytoskeleton is composed of microfilaments that are formed from filamentous (F) polymers of globular G-actin subunits. Actin filaments are organized into bundles and networks, and are attached to the cell membrane, by diverse cross-linking proteins. During cell migration, actin filament bundles form either radially at the leading edge or as axial stress fibers. Early studies demonstrated that loss-of-function mutations in ciliopathy genes increased stress fiber formation and impaired ciliogenesis whereas pharmacological inhibition of actin polymerization promoted ciliogenesis. These studies suggest that polymerization of the actin cytoskeleton, F-actin branching and the formation of stress fibers all inhibit primary cilium formation, whereas depolymerization or depletion of actin enhance ciliogenesis. Here, we review the mechanistic basis for these effects on ciliogenesis, which comprise several cellular processes acting in concert at different timescales. Actin polymerization is both a physical barrier to both cilia-targeted vesicle transport and to the membrane remodeling required for ciliogenesis. In contrast, actin may cause cilia loss by localizing disassembly factors at the ciliary base, and F-actin branching may itself activate the YAP/TAZ pathway to promote cilia disassembly. The fundamental role of actin polymerization in the control of ciliogenesis may present potential new targets for disease-modifying therapeutic approaches in treating ciliopathies.

42 citations


Journal ArticleDOI
TL;DR: The Toxoplasma orthologue of the conserved kinase ERK7 is identified as essential to conoid assembly, and data suggest that this kinase has an ancient and central role in regulating ciliogenesis throughout Eukaryota.
Abstract: Primary cilia are important organizing centers that control diverse cellular processes. Apicomplexan parasites like Toxoplasma gondii have a specialized cilium-like structure called the conoid that organizes the secretory and invasion machinery critical for the parasites' lifestyle. The proteins that initiate the biogenesis of this structure are largely unknown. We identified the Toxoplasma orthologue of the conserved kinase ERK7 as essential to conoid assembly. Parasites in which ERK7 has been depleted lose their conoids late during maturation and are immotile and thus unable to invade new host cells. This is the most severe phenotype to conoid biogenesis yet reported, and is made more striking by the fact that ERK7 is not a conoid protein, as it localizes just basal to the structure. ERK7 has been recently implicated in ciliogenesis in metazoan cells, and our data suggest that this kinase has an ancient and central role in regulating ciliogenesis throughout Eukaryota.

36 citations


Journal ArticleDOI
TL;DR: It is shown that the conserved Never-in-mitosis-A–related kinase-2 (Nek2) removes distal appendage components from the mother centriole prior to mitosis in every cell cycle, suggesting that Nek2 prevents cilia maintenance during mitosis via distalappendage regulation.
Abstract: Distal appendages (DAs) of the mother centriole are essential for the initial steps of ciliogenesis in G1/G0 phase of the cell cycle. DAs are released from centrosomes in mitosis by an undefined mechanism. Here, we show that specific DAs lose their centrosomal localization at the G2/M transition in a manner that relies upon Nek2 kinase activity to ensure low DA levels at mitotic centrosomes. Overexpression of active Nek2A, but not kinase-dead Nek2A, prematurely displaced DAs from the interphase centrosomes of immortalized retina pigment epithelial (RPE1) cells. This dramatic impact was also observed in mammary epithelial cells with constitutively high levels of Nek2. Conversely, Nek2 knockout led to incomplete dissociation of DAs and cilia in mitosis. As a consequence, we observed the presence of a cilia remnant that promoted the asymmetric inheritance of ciliary signaling components and supported cilium reassembly after cell division. Together, our data establish Nek2 as an important kinase that regulates DAs before mitosis.

Journal ArticleDOI
TL;DR: It is shown on polarized human bronchial epithelia that mucus swirls and circular orientational order of the underlying ciliary beats emerge and grow during ciliogenesis, until a macroscopic mucus transport is achieved for physiological ciliary densities.
Abstract: The respiratory tract is protected by mucus, a complex fluid transported along the epithelial surface by the coordinated beating of millions of microscopic cilia, hence the name of mucociliary clearance. Its impairment is associated with all severe chronic respiratory diseases. Yet, the relationship between ciliary density and the spatial scale of mucus transport, as well as the mechanisms that drive ciliary-beat orientations are much debated. Here, we show on polarized human bronchial epithelia that mucus swirls and circular orientational order of the underlying ciliary beats emerge and grow during ciliogenesis, until a macroscopic mucus transport is achieved for physiological ciliary densities. By establishing that the macroscopic ciliary-beat order is lost and recovered by removing and adding mucus, respectively, we demonstrate that cilia–mucus hydrodynamic interactions govern the collective dynamics of ciliary-beat directions. We propose a two-dimensional model that predicts a phase diagram of mucus transport in accordance with the experiments. This paves the way to a predictive in silico modelling of bronchial mucus transport in health and disease. The flow of fluid, such as mucus in the human respiratory tract, can affect biological function. Here the authors show that the hydrodynamic interactions mediated by mucus are essential for the directional coordination of ciliary beating in the lungs.

Journal ArticleDOI
TL;DR: It is proposed that IFT of tubulin is nevertheless needed for ciliogenesis, because it augments the tubulin pool supplied to the ciliary tip by diffusion, thus ensuring that free tubulin there is maintained at the critical concentration for plus-end microtubule assembly during rapid ciliary growth.
Abstract: Tubulin enters the cilium by diffusion and motor-based intraflagellar transport (IFT). However, the respective contribution of each route in providing tubulin for axonemal assembly remains unknown. Using Chlamydomonas, we attenuated IFT-based tubulin transport of GFP-β-tubulins by altering the IFT74/IFT81 tubulin-binding module and the C-terminal E-hook of tubulin. E-hook deficient GFP-β-tubulin is incorporated into the axonemal microtubules, but its transport frequency by IFT was reduced by ∼90% in control cells and essentially abolished when the IFT81 tubulin-binding site was incapacitated. Despite the strong reduction in IFT, the proportion of E-hook deficient GFP-β-tubulin in the axoneme was only moderately reduced. In vivo imaging showed more GFP-β-tubulin particles entering cilia by diffusion than by IFT. Extrapolated to endogenous tubulin, the data indicate that diffusion provides most of the tubulin required for axonemal assembly. We propose that IFT of tubulin is nevertheless needed for ciliogenesis because it augments the tubulin pool supplied to the ciliary tip by diffusion, thus ensuring that free tubulin there is maintained at the critical concentration for plus-end microtubule assembly during rapid ciliary growth.

Journal ArticleDOI
TL;DR: It is shown that an altered cholesterol metabolic status results in abnormal osteogenesis through dysregulation of primary cilium formation during bone formation, indicating that proper intracellular cholesterol status is crucial for primary ciliogenesis and osteogenesis in vitro and in vivo.
Abstract: Human linkage studies suggest that craniofacial deformities result from either genetic mutations related to cholesterol metabolism or high-cholesterol maternal diets. However, little is known about the precise roles of intracellular cholesterol metabolism in the development of craniofacial bones, the majority of which are formed through intramembranous ossification. Here, we show that an altered cholesterol metabolic status results in abnormal osteogenesis through dysregulation of primary cilium formation during bone formation. We found that cholesterol metabolic aberrations, induced through disruption of either Dhcr7 (which encodes an enzyme involved in cholesterol synthesis) or Insig1 and Insig2 (which provide a negative feedback mechanism for cholesterol biosynthesis), result in osteoblast differentiation abnormalities. Notably, the primary cilia responsible for sensing extracellular cues were altered in number and length through dysregulated ciliary vesicle fusion in Dhcr7 and Insig1/2 mutant osteoblasts. As a consequence, WNT/β-catenin and hedgehog signaling activities were altered through dysregulated primary cilium formation. Strikingly, the normalization of defective cholesterol metabolism by simvastatin, a drug used in the treatment of cholesterol metabolic aberrations, rescued the abnormalities in both ciliogenesis and osteogenesis in vitro and in vivo. Thus, our results indicate that proper intracellular cholesterol status is crucial for primary cilium formation during skull formation and homeostasis.

Journal ArticleDOI
TL;DR: Fingerhut and Yamashita show that localization of a novel RNP granule containing axonemal dynein mRNAs facilitates incorporation of these axonEMal proteins, promoting cytoplasmic cilia formation.
Abstract: Cytoplasmic cilia, a specialized type of cilia in which the axoneme resides within the cytoplasm rather than within the ciliary compartment, are proposed to allow for the efficient assembly of very long cilia. Despite being found diversely in male gametes (e.g., Plasmodium falciparum microgametocytes and human and Drosophila melanogaster sperm), very little is known about cytoplasmic cilia assembly. Here, we show that a novel RNP granule containing the mRNAs for axonemal dynein motor proteins becomes highly polarized to the distal end of the cilia during cytoplasmic ciliogenesis in Drosophila sperm. This allows for the incorporation of these axonemal dyneins into the axoneme directly from the cytoplasm, possibly by localizing translation. We found that this RNP granule contains the proteins Reptin and Pontin, loss of which perturbs granule formation and prevents incorporation of the axonemal dyneins, leading to sterility. We propose that cytoplasmic cilia assembly requires the precise localization of mRNAs encoding key axonemal constituents, allowing these proteins to incorporate efficiently into the axoneme.

Journal ArticleDOI
TL;DR: This work demonstrates that CEP83, CEP89, CCDC92, Rabin8, and DVL3 are substrates of TTBK2 kinase activity and suggests that phosphorylation of substrates on multiple sites by T TBK2 is probably involved in the control of ciliogenesis in human cells.
Abstract: Primary cilia are organelles necessary for proper implementation of developmental and homeostasis processes. To initiate their assembly, coordinated actions of multiple proteins are needed. Tau tubulin kinase 2 (TTBK2) is a key player in the cilium assembly pathway, controlling the final step of cilia initiation. The function of TTBK2 in ciliogenesis is critically dependent on its kinase activity; however, the precise mechanism of TTBK2 action has so far not been fully understood due to the very limited information about its relevant substrates. In this study, we demonstrate that CEP83, CEP89, CCDC92, Rabin8, and DVL3 are substrates of TTBK2 kinase activity. Further, we characterize a set of phosphosites of those substrates and CEP164 induced by TTBK2 in vitro and in vivo. Intriguingly, we further show that identified TTBK2 phosphosites and consensus sequence delineated from those are distinct from motifs previously assigned to TTBK2. Finally, we show that TTBK2 is also required for efficient phosphorylation of many S/T sites in CEP164 and provide evidence that TTBK2-induced phosphorylations of CEP164 modulate its function, which in turn seems relevant for the process of cilia formation. In summary, our work provides important insight into the substrates-TTBK2 kinase relationship and suggests that phosphorylation of substrates on multiple sites by TTBK2 is probably involved in the control of ciliogenesis in human cells.

Journal ArticleDOI
TL;DR: The data suggest that HH pathway is crucial for airway epithelial cell differentiation and highlight its role in COPD-associated epithelial remodelling and Gli2 activating transcription factor was demonstrated as a key-element in the regulation of AEC differentiation.

Journal ArticleDOI
TL;DR: It is shown that these three RFX TFs have both redundant and specific functions in ependymal cells, and only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice.
Abstract: Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals. Whereas only one RFX factor regulates ciliogenesis in C. elegans, several distinct RFX factors have been implicated in this process in vertebrates. However, a clear understanding of the specific and redundant functions of different RFX factors in ciliated cells remains lacking. Using RNA-seq and ChIP-seq approaches we identified genes regulated directly and indirectly by RFX1, RFX2 and RFX3 in mouse ependymal cells. We show that these three TFs have both redundant and specific functions in ependymal cells. Whereas RFX1, RFX2 and RFX3 occupy many shared genomic loci, only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice. Our results provide a valuable list of candidate ciliary genes. They also reveal stunning differences between compensatory processes operating in vivo and ex vivo.

Journal ArticleDOI
TL;DR: These findings provide the first evidence that a component of the IFT system that controls ciliogenesis is implicated in the biogenesis of lysosomes.
Abstract: The assembly and function of the primary cilium depends on multimolecular intraflagellar transport (IFT) complexes that shuttle their cargo along the axonemal microtubules through their interaction with molecular motors. The IFT system has been moreover recently implicated in a reciprocal interplay between autophagy and ciliogenesis. We have previously reported that IFT20 and other components of the IFT complexes participate in the assembly of the immune synapse in the non-ciliated T cell, suggesting that other cellular processes regulated by the IFT system in ciliated cells, including autophagy, may be shared by cells lacking a cilium. Starting from the observation of a defect in autophagic clearance and an accumulation of lipid droplets in IFT20-deficient T cells, we show that IFT20 is required for lysosome biogenesis and function by controlling the lysosomal targeting of acid hydrolases. This function involves its ability to regulate the retrograde traffic of the cation-independent mannose-6-phosphate receptor (CI-MPR) to the trans-Golgi network, which is achieved by coupling recycling CI-MPRs to the microtubule motor dynein. Consistent with the lysosomal defect, an upregulation of the TFEB-dependent expression of the lysosomal gene network can be observed in IFT20-deficient cells, which is associated with defective tonic T-cell antigen receptor signaling and mTOR activity. We additionally show that the lysosome-related function of IFT20 extends to non-ciliated cells other than T cells, as well as to ciliated cells. Our findings provide the first evidence that a component of the IFT system that controls ciliogenesis is implicated in the biogenesis of lysosomes.

Journal ArticleDOI
18 Jun 2020-eLife
TL;DR: It is shown that LUZP1 is a cilia regulator that associates with factors linked to centrosome and actin filaments and localizes around the centrioles and to actin cytoskeleton.
Abstract: Primary cilia are sensory organelles crucial for cell signaling during development and organ homeostasis Cilia arise from centrosomes and their formation and function is governed by numerous factors Through our studies on Townes-Brocks Syndrome (TBS), a rare disease linked to abnormal cilia formation in human fibroblasts, we uncovered the leucine-zipper protein LUZP1 as an interactor of truncated SALL1, a dominantly-acting protein causing the disease Using TurboID proximity labeling and pulldowns, we show that LUZP1 associates with factors linked to centrosome and actin filaments Here, we show that LUZP1 is a cilia regulator It localizes around the centrioles and to actin cytoskeleton Loss of LUZP1 reduces F-actin levels, facilitates ciliogenesis and alters Sonic Hedgehog signaling, pointing to a key role in cytoskeleton-cilia interdependency Truncated SALL1 increases the ubiquitin proteasome-mediated degradation of LUZP1 Together with other factors, alterations in LUZP1 may be contributing to TBS etiology

Journal ArticleDOI
TL;DR: In conclusion, maternal nutrition and postnatal leptin surge have a profound impact on ciliogenesis in the hypothalamus of neonatal mice; through these effects they critically modulate the organization of hypothalamic feeding circuits, and a mechanism of early life programming of adult adiposity is revealed, which is mediated by primary cilia in developing hypothalamic neurons.
Abstract: Hypothalamic neurons including proopiomelanocortin (POMC)-producing neurons regulate body weights. The non-motile primary cilium is a critical sensory organelle on the cell surface. An association between ciliary defects and obesity has been suggested, but the underlying mechanisms are not fully understood. Here we show that inhibition of ciliogenesis in POMC-expressing developing hypothalamic neurons, by depleting ciliogenic genes IFT88 and KIF3A, leads to adulthood obesity in mice. In contrast, adult-onset ciliary dysgenesis in POMC neurons causes no significant change in adiposity. In developing POMC neurons, abnormal cilia formation disrupts axonal projections through impaired lysosomal protein degradation. Notably, maternal nutrition and postnatal leptin surge have a profound impact on ciliogenesis in the hypothalamus of neonatal mice; through these effects they critically modulate the organization of hypothalamic feeding circuits. Our findings reveal a mechanism of early life programming of adult adiposity, which is mediated by primary cilia in developing hypothalamic neurons.

Journal ArticleDOI
TL;DR: Targeting the up-regulated CDK4/6 and SMYD2 with inhibitors results in restoration of the primary cilium in tumor and cystic cells, which may normalize cilia-mediated extracellular signals that regulate growth, development, and cellular homeostasis.
Abstract: Dysregulation of cyclin-dependent kinases 4 and 6 (CDK4/6) by unknown mechanisms is highly prevalent in human disease. In this study, we identify direct cross-talk between CDK4/6 and the epigenome via its previously unidentified substrate, SMYD2, a histone/lysine methyltransferase. CDK4/6 positively regulates the phosphorylation and enzymatic activity of SMYD2, while SMYD2 also positively regulates the expression of CDK4/6. We also identify SMYD2 as an α-tubulin methyltransferase, thus connecting CDK4/6-SMYD2 signaling to microtubule dynamics. In addition, depletion or inhibition of CDK4/6 and SMYD2 resulted in increased cilia assembly by affecting (i) microtubule stability and (ii) the expression of IFT20, further connecting CDK4/6-SMYD2 to ciliogenesis. In clinical settings such as breast cancer and autosomal dominant polycystic kidney disease (ADPKD), targeting the up-regulated CDK4/6 and SMYD2 with inhibitors results in restoration of the primary cilium in tumor and cystic cells, which may normalize cilia-mediated extracellular signals that regulate growth, development, and cellular homeostasis.

Journal ArticleDOI
TL;DR: LUZP1 and its interactor, EPLIN, restrict early steps of ciliogenesis through the modulation of actin regulators and actin at the centrosome.
Abstract: Cilia and flagella are microtubule-based cellular projections with important sensory and motility functions. Their absence or malfunction is associated with a growing number of human diseases collectively referred to as ciliopathies. However, the fundamental mechanisms underpinning cilia biogenesis and functions remain only partly understood. Here, we show that depleting LUZP1 or its interacting protein, EPLIN, increases the levels of MyosinVa at the centrosome and primary cilia formation. We further show that LUZP1 localizes to both actin filaments and the centrosome/basal body. Like EPLIN, LUZP1 is an actin-stabilizing protein that regulates actin dynamics, at least in part, by mobilizing ARP2 to the centrosomes. Both LUZP1 and EPLIN interact with known ciliogenesis and cilia-length regulators and as such represent novel players in actin-dependent centrosome to basal body conversion. Ciliogenesis deregulation caused by LUZP1 or EPLIN loss may thus contribute to the pathology of their associated disease states.

Journal ArticleDOI
TL;DR: Bi-allelic loss-of-function variations in SMO in seven individuals from five independent families cause a wide phenotypic spectrum of developmental anomalies affecting the brain, heart, spine, skeleton, and enteric nervous system.
Abstract: The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.

Journal ArticleDOI
01 Jul 2020-Bone
TL;DR: This study reports that microgravity depolymerizes the microtubule network of rat calvarial osteoblasts (ROBs) reversibly but has no effect on the architecture of actin filaments, supporting the previously established role of primary cilia as a sensor in bone metabolism.

Journal ArticleDOI
TL;DR: It is demonstrated that dysregulation of O-GlcNAcylation is related to diabetic complications due to defects in cilia (Yu et al., 2019), which are hairlike protrusions present on the surface of most mammalian cells.
Abstract: O-GlcNAcylation is a nutrient sensor that is particularly sensitive to environmental glucose (Hardiville and Hart, 2014). Glucose can be converted to UDP-GlcNAc through the hexosamine biosynthetic pathway, providing a substrate for O-GlcNAcylation. Two enzymes participate in this reversible modification, O-GlcNAc transferase (OGT), which adds a single GlcNAc residue to the serine/threonine sites of proteins, and O-GlcNAcase (OGA), which removes the residue (Yang and Qian, 2017). OGT is a highly conserved, single gene-encoded protein that is ubiquitously expressed in higher eukaryotes, and human OGT shares more than 65% sequence identity with its Caenorhabditis elegans and Drosophila melanogaster orthologs (Jinek et al., 2004). OGlcNAcylation can influence protein conformation, activity, interaction, half-life, and subcellular localization. Almost all functional proteins are present among the pool of O-GlcNAcylated proteins, including enzymes, structural proteins, and transcription factors. Accordingly, O-GlcNAcylation can regulate complex processes, such as the cell cycle and embryonic development (Yang and Qian, 2017). Dysregulation of O-GlcNAcylation has been implicated in a wide range of pathologies, including cancer, neurodegeneration, cardiovascular diseases, and diabetes. The level of OGlcNAcylation is greatly dysregulated by the abnormal glucose metabolism in diabetic mice and patients (Brownlee, 2001). In addition, we have demonstrated that dysregulation of O-GlcNAcylation is related to diabetic complications due to defects in cilia (Yu et al., 2019), which are hairlike protrusions present on the surface of most mammalian cells. However, the molecular details regarding the role of OGT in cilium assembly are still unclear. To investigate the function of OGT in cilium formation, we generated OGT haploinsufficient mice. Because Ogt is an X-linked gene and complete knockout of OGT is lethal in mice, we first obtained female OgtCre and OgtCre mice by crossing Ogt mice with Ubc-Cre-ERT2 mice (Figs. 1A and S1A). We then obtained Ogt and Ogt mice through intraperitoneal injection of tamoxifen (Fig. 1B). Two months after tamoxifen-induced knockdown of OGT, we found that the levels of OGT and protein O-GlcNAcylation were significantly reduced in Ogt mice (Fig. S1B). We then examined the morphology of cilia in these OGT haploinsufficient mice. Immunostaining of primary cilia and motile cilia in different tissues revealed a number of defects in Ogt mice. For example, retinal photoreceptor cilia, which are modified primary cilia, were fewer and shorter in Ogt mouse eyes than in Ogt mouse eyes; ciliary length reduced from ∼1.5 μm to ∼1.0 μm (Fig. 1C–E). In addition, we found fewer and shorter motile cilia in Ogt mouse trachea (Fig. 1F–I). Line profiles along the arrow-indicated regions revealed that OGT knockdown caused a significant decrease in the fluorescence intensity of tracheal epithelial cilia (Fig. 1F and 1G), and quantification revealed a ∼50% decrease in the number of ciliated cells in the trachea (Fig. 1H). These data suggest that OGT is required for the formation of both primary cilia and motile cilia in mice. We next investigated the role of OGT in the biogenesis of motile cilia using mouse tracheal epithelial cells (MTECs), which were cultured at an air-liquid interface (ALI) to induce the formation of multiple motile cilia. In contrast to cells with primary cilia, MTECs require a unique process involving the duplication of hundreds of centrioles, because each cilium requires a specialized centriole as a basal body (Zhao et al., 2013). After OGT activity was inhibited with a chemical compound containing a benzoxazolinone core (BZX) (Fig. S1C), which specifically inhibits OGT activity (Jiang et al., 2011), MTECs exhibited decreased ciliogenesis (Fig. 1J–N). The percentage of ciliated cells on ALI day 9 decreased from 80% to 50% (Fig. 1J and 1K). In addition, scanning electron microscopy (SEM) images revealed that few cilia protruded out of the membrane in BZX-treated cells (Fig. S1D), leading to fewer cilia per ciliated cell (Fig. 1L) and shorter cilia (Fig. 1M). Further investigation revealed an additional role of OGT in the unique duplication and scattering process of multiple centrioles. The basal bodies remained clustered in BZX-treated cells, in contrast to the even distribution of basal bodies in control cells (Fig. S1E and S1F). Moreover, the number of centrioles also decreased, implying impaired centriole duplication (Figs. S1E and 1N). These results were confirmed by OSMI-

Journal ArticleDOI
TL;DR: It is shown that TACC3 was markedly upregulated in PCa and that knockdown of T ACC3 restrained tumorigenesis and tumor growth in vitro and in vivo, and it was found that Tacc3 interacts with filamin A, and elevated levels of TACC2 disrupted the interaction between filamin B and meckelin, thereby restraining primary cilium formation in PCA cells.

Journal ArticleDOI
19 May 2020-PLOS ONE
TL;DR: The transcriptional reprogramming observed in high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis, which in the literature have been associated with fibro-adipogenic precursor differentiation.
Abstract: Intramuscular fat content (IMF) is a complex trait influencing the technological and sensorial features of meat products and determining pork quality. Thus, we aimed at analyzing through RNA-sequencing the Semimembranosus muscle transcriptome of Italian Large White pigs to study the gene networks associated with IMF deposition. Two groups of samples were used; each one was composed of six unrelated pigs with extreme and divergent IMF content (0.67 ± 0.09% in low IMF vs. 6.81 ± 1.17% in high IMF groups) that were chosen from 950 purebred individuals. Paired-end RNA sequences were aligned to Sus scrofa genome assembly 11.1 and gene counts were analyzed using WGCNA and DeSeq2 packages in R environment. Interestingly, among the 58 differentially expressed genes (DEGs), several were related to primary cilia organelles (such as Lebercilin 5 gene), in addition to the genes involved in the regulation of cell differentiation, in the control of RNA-processing, and G-protein and ERK signaling pathways. Together with cilia-related genes, we also found in high IMF pigs an over-expression of the Fibroblast Growth Factor 2 (FGF2) gene, which in other animal species was found to be a regulator of ciliogenesis. Four WGCNA gene modules resulted significantly associated with IMF deposition: grey60 (P = 0.003), darkturquoise (P = 0.022), skyblue1 (P = 0.022), and lavenderblush3 (P = 0.030). The genes in the significant modules confirmed the results obtained for the DEGs, and the analysis with "cytoHubba" indicated genes controlling RNA splicing and cell differentiation as hub genes. Among the complex molecular processes affecting muscle fat depots, genes involved in primary cilia may have an important role, and the transcriptional reprogramming observed in high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis, which in the literature have been associated with fibro-adipogenic precursor differentiation.


Journal ArticleDOI
TL;DR: It is demonstrated that Dyrk1a localizes to mitotic spindles and that its inhibition leads to decreased forebrain size, abnormal cell cycle progression, and cell death during brain development, providing hypotheses about potential mechanisms of pathobiology and underscore the utility of X. tropicalis as a model system for understanding neurodevelopmental disorders.
Abstract: DYRK1A [dual specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A] is a high-confidence autism risk gene that encodes a conserved kinase. In addition to autism, individuals with putative loss-of-function variants in DYRK1A exhibit microcephaly, intellectual disability, developmental delay and/or congenital anomalies of the kidney and urinary tract. DYRK1A is also located within the critical region for Down syndrome; therefore, understanding the role of DYRK1A in brain development is crucial for understanding the pathobiology of multiple developmental disorders. To characterize the function of this gene, we used the diploid frog Xenopus tropicalis We discover that Dyrk1a is expressed in ciliated tissues, localizes to ciliary axonemes and basal bodies, and is required for ciliogenesis. We also demonstrate that Dyrk1a localizes to mitotic spindles and that its inhibition leads to decreased forebrain size, abnormal cell cycle progression and cell death during brain development. These findings provide hypotheses about potential mechanisms of pathobiology and underscore the utility of X. tropicalis as a model system for understanding neurodevelopmental disorders.