scispace - formally typeset
Search or ask a question

Showing papers on "Coupled cluster published in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors used the collinear resonance ionization spectroscopy method with β-decay detection to measure the charge radius of potassium isotopes up to 52K and showed no sign of magicity at 32 neutrons.
Abstract: Nuclear charge radii are sensitive probes of different aspects of the nucleon–nucleon interaction and the bulk properties of nuclear matter, providing a stringent test and challenge for nuclear theory. Experimental evidence suggested a new magic neutron number at N = 32 (refs. 1–3) in the calcium region, whereas the unexpectedly large increases in the charge radii4,5 open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with β-decay detection, we were able to extend charge radii measurements of potassium isotopes beyond N = 32. Here we provide a charge radius measurement of 52K. It does not show a signature of magic behaviour at N = 32 in potassium. The results are interpreted with two state-of-the-art nuclear theories. The coupled cluster theory reproduces the odd–even variations in charge radii but not the notable increase beyond N = 28. This rise is well captured by Fayans nuclear density functional theory, which, however, overestimates the odd–even staggering effect in charge radii. These findings highlight our limited understanding of the nuclear size of neutron-rich systems, and expose problems that are present in some of the best current models of nuclear theory. The charge radii of potassium isotopes up to 52K are measured, and show no sign of magicity at 32 neutrons as previously suggested in calcium. The observations are interpreted with coupled cluster and density functional theory calculations.

79 citations


Journal ArticleDOI
Z.G. Liu1, Liqiang Lin1, Qingqing Jia1, Zheng Cheng1, Yanyan Jiang1, Yanwen Guo1, Jing Ma1 
TL;DR: In this paper, a multilevel attention neural network is proposed to enable chemical interpretable insights being fused into multitask learning through weighting contributions from various atoms and taking the atom-centered symmetry functions (ACSFs) as the teacher descriptor.
Abstract: The development of efficient models for predicting specific properties through machine learning is of great importance for the innovation of chemistry and material science. However, predicting global electronic structure properties like Frontier molecular orbital highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and their HOMO-LUMO gaps from the small-sized molecule data to larger molecules remains a challenge. Here, we develop a multilevel attention neural network, named DeepMoleNet, to enable chemical interpretable insights being fused into multitask learning through (1) weighting contributions from various atoms and (2) taking the atom-centered symmetry functions (ACSFs) as the teacher descriptor. The efficient prediction of 12 properties including dipole moment, HOMO, and Gibbs free energy within chemical accuracy is achieved by using multiple benchmarks, both at the equilibrium and nonequilibrium geometries, including up to 110,000 records of data in QM9, 400,000 records in MD17, and 280,000 records in ANI-1ccx for random split evaluation. The good transferability for predicting larger molecules outside the training set is demonstrated in both equilibrium QM9 and Alchemy data sets at the density functional theory (DFT) level. Additional tests on nonequilibrium molecular conformations from DFT-based MD17 data set and ANI-1ccx data set with coupled cluster accuracy as well as the public test sets of singlet fission molecules, biomolecules, long oligomers, and protein with up to 140 atoms show reasonable predictions for thermodynamics and electronic structure properties. The proposed multilevel attention neural network is applicable to high-throughput screening of numerous chemical species in both equilibrium and nonequilibrium molecular spaces to accelerate rational designs of drug-like molecules, material candidates, and chemical reactions.

54 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations (CCSD(T) interaction energies are not consistent for a set of polarizable supramolecules.
Abstract: Quantum-mechanical methods are used for understanding molecular interactions throughout the natural sciences. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] are state-of-the-art trusted wavefunction methods that have been shown to yield accurate interaction energies for small organic molecules. These methods provide valuable reference information for widely-used semi-empirical and machine learning potentials, especially where experimental information is scarce. However, agreement for systems beyond small molecules is a crucial remaining milestone for cementing the benchmark accuracy of these methods. We show that CCSD(T) and DMC interaction energies are not consistent for a set of polarizable supramolecules. Whilst there is agreement for some of the complexes, in a few key systems disagreements of up to 8 kcal mol-1 remain. These findings thus indicate that more caution is required when aiming at reproducible non-covalent interactions between extended molecules.

41 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the feasibility of the phaseless finite-temperature auxiliary-field quantum Monte Carlo (ph-FT-AFQMC) method for ab initio systems using the uniform electron gas as a model.
Abstract: We investigate the viability of the phaseless finite-temperature auxiliary-field quantum Monte Carlo (ph-FT-AFQMC) method for ab initio systems using the uniform electron gas as a model. Through comparisons with exact results and FT coupled cluster theory, we find that ph-FT-AFQMC is sufficiently accurate at high to intermediate electronic densities. We show, both analytically and numerically, that the phaseless constraint at FT is fundamentally different from its zero-temperature counterpart (i.e., ph-ZT-AFQMC), and generally, one should not expect ph-FT-AFQMC to agree with ph-ZT-AFQMC in the low-temperature limit. With an efficient implementation, we are able to compare exchange-correlation energies to the existing results in the thermodynamic limit and find that the existing parameterizations are highly accurate. In particular, we found that ph-FT-AFQMC exchange-correlation energies are in better agreement with a known parameterization than is restricted path-integral MC in the regime of Θ ≤ 0.5 and rs ≤ 2, which highlights the strength of ph-FT-AFQMC.

32 citations


Journal ArticleDOI
TL;DR: In this article, a machine-learning-based density functional approximation (KDFA) was proposed for non-covalent, ionic and covalent interactions across system of different sizes.
Abstract: Density-functional theory (DFT) is a rigorous and (in principle) exact framework for the description of the ground state properties of atoms, molecules and solids based on their electron density. While computationally efficient density-functional approximations (DFAs) have become essential tools in computational chemistry, their (semi-)local treatment of electron correlation has a number of well-known pathologies, e.g. related to electron self-interaction. Here, we present a type of machine-learning (ML) based DFA (termed Kernel Density Functional Approximation, KDFA) that is pure, non-local and transferable, and can be efficiently trained with fully quantitative reference methods. The functionals retain the mean-field computational cost of common DFAs and are shown to be applicable to non-covalent, ionic and covalent interactions, as well as across different system sizes. We demonstrate their remarkable possibilities by computing the free energy surface for the protonated water dimer at hitherto unfeasible gold-standard coupled cluster quality on a single commodity workstation. Semilocal density functionals, while computationally efficient, do not account for non-local correlation. Here, the authors propose a machine-learning approach to DFT that leads to non-local and transferable functionals applicable to non-covalent, ionic and covalent interactions across system of different sizes.

28 citations


Journal ArticleDOI
TL;DR: In this article, a machine-learned potential energy surface (PES) for molecules with more than 10 atoms is proposed, achieving a barrier of 3.5 kcal/mol in agreement with the LCCSD(T) barrier.
Abstract: Machine-learned potential energy surfaces (PESs) for molecules with more than 10 atoms are typically forced to use lower-level electronic structure methods such as density functional theory (DFT) and second-order Moller-Plesset perturbation theory (MP2). While these are efficient and realistic, they fall short of the accuracy of the "gold standard" coupled-cluster method, especially with respect to reaction and isomerization barriers. We report a major step forward in applying a Δ-machine learning method to the challenging case of acetylacetone, whose MP2 barrier height for H-atom transfer is low by roughly 1.1 kcal/mol relative to the benchmark CCSD(T) barrier of 3.2 kcal/mol. From a database of 2151 local CCSD(T) energies and training with as few as 430 energies, we obtain a new PES with a barrier of 3.5 kcal/mol in agreement with the LCCSD(T) barrier of 3.5 kcal/mol and close to the benchmark value. Tunneling splittings due to H-atom transfer are calculated using this new PES, providing improved estimates over previous ones obtained using an MP2-based PES.

27 citations



Journal ArticleDOI
TL;DR: In this article, the structure of the energy landscape of variational coupled-cluster (VpCCD) was explored and compared with its projected version in the case where the excitation operator is restricted to paired double excitations.
Abstract: In single-reference coupled-cluster (CC) methods, one has to solve a set of non-linear polynomial equations in order to determine the so-called amplitudes that are then used to compute the energy and other properties. Although it is of common practice to converge to the (lowest-energy) ground-state solution, it is also possible, thanks to tailored algorithms, to access higher-energy roots of these equations that may or may not correspond to genuine excited states. Here, we explore the structure of the energy landscape of variational CC and we compare it with its (projected) traditional version in the case where the excitation operator is restricted to paired double excitations (pCCD). By investigating two model systems (the symmetric stretching of the linear H4 molecule and the continuous deformation of the square H4 molecule into a rectangular arrangement) in the presence of weak and strong correlations, the performance of variational pCCD (VpCCD) and traditional pCCD is gauged against their configuration interaction (CI) equivalent, known as doubly occupied CI, for reference Slater determinants made of ground- or excited-state Hartree–Fock orbitals or state-specific orbitals optimized directly at the VpCCD level. The influence of spatial symmetry breaking is also investigated.

25 citations


Journal ArticleDOI
TL;DR: In this article, the performances of various unitary coupled cluster (UCC) ansatze applied to VQE calculations on excited states are investigated, using quantum circuits designed to represent single reference and multireference wavefunctions to calculate energy curves with respect to variations in the molecular geometry.
Abstract: The variational quantum eigensolver (VQE) algorithm, designed to calculate the energy of molecular ground states on near-term quantum computers, requires specification of symmetries that describe the system, e.g. spin state and number of electrons. This opens the possibility of using VQE to obtain excited states as the lowest energy solutions of a given set of symmetries. In this paper, the performances of various unitary coupled cluster (UCC) ansatze applied to VQE calculations on excited states are investigated, using quantum circuits designed to represent single reference and multireference wavefunctions to calculate energy curves with respect to variations in the molecular geometry. These ansatze include standard UCCSD, as well as modified versions of UCCGSD and k-UpCCGSD which are engineered to tackle excited states without undesired spin symmetry cross-over to lower states during VQE optimization. These studies are carried out on a range of systems including H$_2$, H$_3$, H$_4$, NH, and OH$^{+}$, CH$_2$, NH$^{+}_{2}$, covering examples of spin singlet, doublet and triplet molecular ground states with single and multireference excited states. In most cases, our calculations are in excellent agreement with results from full configuration interaction calculations on classical machines, thus showing that the VQE algorithm is capable of calculating the lowest excited state at a certain symmetry, including multireference closed and open shell states, by setting appropriate restrictions on the excitations considered in the cluster operator, and appropriate constraints in the qubit register encoding the starting mean field state.

24 citations


Journal ArticleDOI
TL;DR: The pair coupled cluster doubles (pCCD) method has a series of interesting features, such as it provides ground-state energies very close to what is obtained with doubly occupied configuration interaction (DOCI), but with polynomial cost (compared with the exponential cost of the latter) as discussed by the authors.
Abstract: The pair coupled cluster doubles (pCCD) method (where the excitation manifold is restricted to electron pairs) has a series of interesting features. Among others, it provides ground-state energies very close to what is obtained with doubly-occupied configuration interaction (DOCI), but with polynomial cost (compared with the exponential cost of the latter). Here, we address whether this similarity holds for excited states, by exploring the symmetric dissociation of the linear \ce{H4} molecule. When ground-state Hartree-Fock (HF) orbitals are employed, pCCD and DOCI excited-state energies do not match, a feature that is assigned to the poor HF reference. In contrast, by optimizing the orbitals at the pCCD level (oo-pCCD) specifically for each excited state, the discrepancies between pCCD and DOCI decrease by one or two orders of magnitude. Therefore, the pCCD and DOCI methodologies still provide comparable energies for excited states, but only if suitable, state-specific orbitals are adopted. We also assessed whether a pCCD approach could be used to directly target doubly-excited states, without having to resort to the equation-of-motion (EOM) formalism. In our $\Delta$oo-pCCD model, excitation energies were extracted from the energy difference between separate oo-pCCD calculations for the ground state and the targeted excited state. For a set comprising the doubly-excited states of \ce{CH+}, \ce{BH}, nitroxyl, nitrosomethane, and formaldehyde, we found that $\Delta$oo-pCCD provides quite accurate excitation energies, with root mean square deviations (with respect to full configuration interaction results) lower than CC3 and comparable to EOM-CCSDT, two methods with much higher computational cost.

24 citations


Journal ArticleDOI
TL;DR: In this paper, a molecular test set termed IONPI19 is compiled for inter- and intramolecular ion-π interactions, which is well balanced between anionic and cationic systems.
Abstract: The strongly attractive noncovalent interactions of charged atoms or molecules with π-systems are important binding motifs in many chemical and biological systems. These so-called ion–π interactions play a major role in enzymes, molecular recognition, and for the structure of proteins. In this work, a molecular test set termed IONPI19 is compiled for inter- and intramolecular ion–π interactions, which is well balanced between anionic and cationic systems. The IONPI19 set includes interaction energies of significantly larger molecules (up to 133 atoms) than in other ion–π test sets and covers a broad range of binding motifs. Accurate (local) coupled cluster values are provided as reference. Overall, 19 density functional approximations, including seven (meta-)GGAs, eight hybrid functionals, and four double-hybrid functionals combined with three different London dispersion corrections, are benchmarked for interaction energies. DFT results are further compared to wave function based methods such as MP2 and dispersion corrected Hartree–Fock. Also, the performance of semiempirical QM methods such as the GFNn-xTB and PMx family of methods is tested. It is shown that dispersion-uncorrected DFT underestimates ion–π interactions significantly, even though electrostatic interactions dominate the overall binding. Accordingly, the new charge dependent D4 dispersion model is found to be consistently better than the standard D3 correction. Furthermore, the functional performance trend along Jacob's ladder is generally obeyed and the reduction of the self-interaction error leads to an improvement of (double) hybrid functionals over (meta-)GGAs, even though the effect of the SIE is smaller than expected. Overall, the double-hybrids PWPB95-D4/QZ and revDSD-PBEP86-D4/QZ turned out to be the most reliable among all assessed methods for the description of ion–π interactions, which opens up new perspectives for systems where coupled cluster calculations are no longer computationally feasible.

Journal ArticleDOI
TL;DR: Spin-Coupled Generalized Valence Bond (SCGVB) theory as mentioned in this paper provides a compelling orbital description of the electronic structure of molecules as well as an efficient and effective zero-order wave function for calculations striving for quantitative predictions of molecular structures, energy properties, and other properties.
Abstract: Spin-Coupled Generalized Valence Bond (SCGVB) theory provides the foundation for a comprehensive theory of the electronic structure of molecules. SCGVB theory offers a compelling orbital description of the electronic structure of molecules as well as an efficient and effective zero-order wave function for calculations striving for quantitative predictions of molecular structures, energetics, and other properties. The orbitals in the SCGVB wave function are usually semilocalized, and for most molecules, they can be interpreted using concepts familiar to all chemists (hybrid orbitals, localized bond pairs, lone pairs, etc.). SCGVB theory also provides new perspectives on the nature of the bonds in molecules such as C2, Be2 and SF4/SF6. SCGVB theory contributes unparalleled insights into the underlying cause of the first-row anomaly in inorganic chemistry as well as the electronic structure of organic molecules and the electronic mechanisms of organic reactions. The SCGVB wave function accounts for nondynamical correlation effects and, thus, corrects the most serious deficiency in molecular orbital (RHF) wave functions. Dynamical correlation effects, which are critical for quantitative predictions, can be taken into account using the SCGVB wave function as the zero-order wave function for multireference configuration interaction or coupled cluster calculations.

Journal ArticleDOI
TL;DR: In this article, the effects of quantum electrodynamics (QED) are included nonperturbatively using the model QED operator that is now implemented for molecules and it is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac-Coulomb-Breit Hamiltonian and the experiment.
Abstract: Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.

Journal ArticleDOI
11 Jan 2021
TL;DR: In this article, a variety of a posteriori corrections to the iQCC energies are presented to reduce the number of iterations to achieve the desired accuracy, based on a low-order perturbation theory series.
Abstract: The iterative qubit coupled cluster (iQCC) method is a systematic variational approach to solve the electronic structure problem on universal quantum computers. It is able to use arbitrarily shallow quantum circuits at expense of iterative canonical transformation of the Hamiltonian and rebuilding a circuit. Here we present a variety of a posteriori corrections to the iQCC energies to reduce the number of iterations to achieve the desired accuracy. Our energy corrections are based on a low-order perturbation theory series that can be efficiently evaluated on a classical computer. Moreover, capturing a part of the total energy perturbatively, allows us to formulate the qubit active-space concept, in which only a subset of all qubits is treated variationally. As a result, further reduction of quantum resource requirements is achieved. We demonstrate the utility and efficiency of our approach numerically on the examples of 10-qubit N$_2$ molecule dissociation, the 24-qubit H$_2$O symmetric stretch, and 56-qubit singlet-triplet gap calculations for the technologically important complex, tris-(2-phenylpyridine)iridium(III), Ir(ppy)$_3$.

Journal ArticleDOI
TL;DR: In this article, the authors used a focal-point method based on second-order Moller−Plesset theory (MP2) and the domain based local pair natural orbital scheme for the coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] extrapolated to the complete basis set (CBS) limit.
Abstract: In this work, benchmark binding energies for dispersion-bound complexes in the L7 dataset, the DNA–ellipticine intercalation complex, and the buckycatcher–C60 complex with 120 heavy atoms using a focal-point method based on the canonical form of second-order Moller−Plesset theory (MP2) and the domain based local pair natural orbital scheme for the coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] extrapolated to the complete basis set (CBS) limit are reported. This work allows for increased confidence given the agreement with respect to values recently obtained using the local natural orbital CCSD(T) for L7 and the canonical CCSD(T)/CBS result for the coronene dimer (C2C2PD). Therefore, these results can be considered pushing the CCSD(T)/CBS binding benchmark to the hundred-atom scale. The disagreements between the two state-of-the-art methods, CCSD(T) and fixed-node diffusion Monte Carlo, are substantial with at least 2.0 (∼10%), 1.9 (∼5%), and 10.3 kcal/mol (∼25%) differences for C2C2PD in L7, DNA–ellipticine, and buckycatcher–C60, respectively. Such sizable discrepancy above “chemical accuracy” for large noncovalent complexes indicates how challenging it is to obtain benchmark binding interactions for systems beyond small molecules, although the three up-to-date density functionals, PBE0+D4, ωB97M-V, and B97M-V, agree better with CCSD(T) for these large systems. In addition to reporting these values, different basis sets and various CBS extrapolation parameters for Hartree–Fock and MP2 correlation energies were tested for the first time in large noncovalent complexes with the goal of providing some indications toward optimal cost effective routes to approach the CBS limit without substantial loss in quality.

Journal ArticleDOI
TL;DR: In this paper, a theoretical framework for computing Auger rates based on the Feshbach-Fano approach and the equation-of-motion coupled-cluster ansatze augmented with core-valence separation was introduced.
Abstract: X-ray photon absorption leads to the creation of highly excited species, which often decay through the Auger process. The theoretical treatment of Auger decay is challenging because of the resonance nature of the initial core-excited or core-ionized states and the continuous nature of the ejected electron. In Paper I [W. Skomorowski and A. I. Krylov, J. Chem. Phys. 154, 084124 (2021)], we have introduced a theoretical framework for computing Auger rates based on the Feshbach–Fano approach and the equation-of-motion coupled-cluster ansatze augmented with core–valence separation. The outgoing Auger electron is described with a continuum orbital. We considered two approximate descriptions—a plane wave and a Coulomb wave with an effective charge. Here, we use the developed methodology to calculate Auger transition rates in core-ionized and core-excited benchmark systems (Ne, H2O, CH4, and CO2). Comparison with the available experimental spectra shows that the proposed computational scheme provides reliable ab initio predictions of the Auger spectra. The reliability, cost efficiency, and robust computational setup of this methodology offer advantages in applications to a large variety of systems.

Journal ArticleDOI
TL;DR: In this article, a new protocol for the calculation of the infrared (IR) spectra of complex systems, which combines the fragment-based Coupled Cluster method and anharmonic vibrational quasi-degenerate perturbation theory, is presented.
Abstract: The spectroscopic features of protonated water species in dilute acid solutions have been long sought after for understanding the microscopic behavior of the proton in water with gas-phase water clusters H+(H2O)n extensively studied as bottom-up model systems. We present a new protocol for the calculation of the infrared (IR) spectra of complex systems, which combines the fragment-based Coupled Cluster method and anharmonic vibrational quasi-degenerate perturbation theory, and demonstrate its accuracy towards the complete and accurate assignment of the IR spectrum of the H+(H2O)21 cluster. The site-specific IR spectral signatures reveal two distinct structures for the internal and surface four-coordinated water molecules, which are ice-like and liquid-like, respectively. The effect of inter-molecular interaction between water molecules is addressed, and the vibrational resonance is found between the O-H stretching fundamental and the bending overtone of the nearest neighboring water molecule. The revelation of the spectral signature of the excess proton offers deeper insight into the nature of charge accommodation in the extended hydrogen-bonding network underpinning this aqueous cluster. Protonated water species have been the subject of numerous experimental and computational studies. Here the authors provide a nearly complete assignment of the experimental IR spectrum of the H+(H2O)21 water cluster based on high-level wavefunction theory and anharmonic vibrational quasi-degenerate perturbation theory.

Journal ArticleDOI
TL;DR: In this paper, the development of relativistic coupled-cluster (CC) and equation-of-motion (EOM•CC) methods is reviewed and an emphasis is placed on recent efforts to improve the computational efficiency of CC and EOM-CC calculations with non-perturbative treatments of spin-orbit coupling (SO•CC and eOM−CC) by partially recovering spin symmetry.
Abstract: The development of relativistic coupled‐cluster (CC) and equation‐of‐motion coupled‐cluster (EOM‐CC) methods is reviewed. An emphasis is placed on recent efforts to improve the computational efficiency of CC and EOM‐CC calculations with non‐perturbative treatments of spin‐orbit coupling (SO‐CC and EOM‐CC) by partially recovering spin symmetry in the formulations. Example calculations of electronic ground state as well as valence‐excited and core‐excited states for molecules containing heavy elements are presented to demonstrate the applicability and usefulness of the SO‐CC and EOM‐CC methods. Future directions for the development of the SO‐CC and EOM‐CC methods are also discussed.

Journal ArticleDOI
TL;DR: In this paper, the similarity transformed Hamiltonian with a Hilbert-space Jastrow operator is summable to all orders and can be solved over AGP by projecting the Schrodinger equation.
Abstract: Single-reference methods such as Hartree–Fock-based coupled cluster theory are well known for their accuracy and efficiency for weakly correlated systems. For strongly correlated systems, more sophisticated methods are needed. Recent studies have revealed the potential of the antisymmetrized geminal power (AGP) as an excellent initial reference for the strong correlation problem. While these studies improved on AGP by linear correlators, we explore some non-linear exponential Ansatze in this paper. We investigate two approaches in particular. Similar to Wahlen-Strothman et al. [Phys. Rev. B 91, 041114(R) (2015)], we show that the similarity transformed Hamiltonian with a Hilbert-space Jastrow operator is summable to all orders and can be solved over AGP by projecting the Schrodinger equation. The second approach is based on approximating the unitary pair-hopper Ansatz recently proposed for application on a quantum computer. We report benchmark numerical calculations against the ground state of the pairing Hamiltonian for both of these approaches.

Journal ArticleDOI
TL;DR: In this article, a set of accurate canonical CCSD(T) energies for stationary points on the potential energy surface for Ru(II, III) chloride carbonyl catalysis of two competing reactions between benzene and methyl acrylate (MA), namely, hydroarylation and oxidative coupling, were evaluated.
Abstract: We have evaluated a set of accurate canonical CCSD(T) energies for stationary points on the potential energy surface for Ru(II, III) chloride carbonyl catalysis of two competing reactions between benzene and methyl acrylate (MA), namely, hydroarylation and oxidative coupling. We have then applied this set to evaluate the performance of localized orbital coupled-cluster methods and several new and common density functionals. We find that (a) DLPNO-CCSD(T) with TightPNO cutoffs is an acceptable substitute for full canonical CCSD(T) calculations on this system; (b) for the closed-shell systems where it could be applied, LNO-CCSD(T) with tight convergence criteria is very close to the canonical results; (c) the recent ωB97X-V and ωB97M-V functionals exhibit superior performance to commonly used DFT functionals in both closed- and open-shell calculations; (d) the revDSD-PBEP86 revision of the DSD-PBEP86 double hybrid represents an improvement over the original, even though transition metals were not involved in its parametrization; and (e) DSD-SCAN and DOD-SCAN show comparable efficiency. Most tested (meta)-GGA and hybrid density functionals perform better for open-shell than for closed-shell complexes; this is not the case for the double hybrids considered.

Journal ArticleDOI
TL;DR: In this article, the properties of highly polar diatomic molecules containing transition-metal atoms were theoretically investigated and the potential energy curves, permanent electric dipole moments, spectroscopic constants, and leading long-range dispersion-interaction coefficients for molecules consisting of either a Cu or Ag atom interacting with an alkali-metal or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba, Ra) atom.
Abstract: We theoretically investigate the properties of highly polar diatomic molecules containing $^{2}S$-state transition-metal atoms. We calculate potential energy curves, permanent electric dipole moments, spectroscopic constants, and leading long-range dispersion-interaction coefficients for molecules consisting of either a Cu or Ag atom interacting with an alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba, Ra) atom. We use ab initio electronic structure methods, such as the coupled cluster and configuration interaction ones, with large Gaussian basis sets and small-core relativistic-energy-consistent pseudopotentials. We predict that the studied molecules in the ground electronic state are strongly bound with highly polarized covalent or ionic bonds resulting in very large permanent electric dipole moments. We find that highly excited vibrational levels have maximal electric dipole moments, e.g., exceeding 13 D for CsAg and 6 D for BaAg. Results for ${\mathrm{Cu}}_{2}, {\mathrm{Ag}}_{2}$, and CuAg are also reported. The studied molecules may find application in ultracold dipolar many-body physics, controlled chemistry, or precision measurement experiments.

Journal ArticleDOI
TL;DR: In this paper, a plane wave-based embedding approach is proposed to treat local electron correlation effects in periodic environments, which allows for an accurate and efficient treatment of long-range dispersion effects.
Abstract: We present an embedding approach to treat local electron correlation effects in periodic environments. In a single consistent framework, our plane wave based scheme embeds a local high-level correlation calculation [here, Coupled Cluster (CC) theory], employing localized orbitals, into a low-level correlation calculation [here, the direct Random Phase Approximation (RPA)]. This choice allows for an accurate and efficient treatment of long-range dispersion effects. Accelerated convergence with respect to the local fragment size can be observed if the low-level and high-level long-range dispersions are quantitatively similar, as is the case for CC in RPA. To demonstrate the capabilities of the introduced embedding approach, we calculate adsorption energies of molecules on a surface and in a chabazite crystal cage, as well as the formation energy of a lattice impurity in a solid at the level of highly accurate many-electron perturbation theories. The absorption energy of a methane molecule in a zeolite chabazite is converged with an error well below 20 meV at the CC level. As our largest periodic benchmark system, we apply our scheme to the adsorption of a water molecule on titania in a supercell containing more than 1000 electrons.

Journal ArticleDOI
TL;DR: In this paper, a quantum-inspired quantum algorithm for unitary coupled cluster theory (UCC) is presented for calculations of the H10 linear chain and the H2O molecule with single and double ζ basis sets.
Abstract: The factorized form of unitary coupled cluster theory (UCC) is a promising wave-function ansatz for the variational quantum eigensolver algorithm. Here, we present a quantum-inspired classical algorithm for UCC based on an exact operator identity for the individual UCC factors. We implement this algorithm for calculations of the H10 linear chain and the H2O molecule with single and double ζ basis sets to provide insights into UCC as a wave-function ansatz. We find that for weakly correlated molecules, the factorized form of the UCC provides similar accuracy to conventional coupled cluster theory (CC); for strongly correlated molecules, where CC often breaks down, UCC significantly outperforms the configuration interaction (CI) ansatz. As a result, the factorized form of the UCC is an accurate, efficient, and reliable electronic structure method in both the weakly and strongly correlated regions. This classical algorithm now allows robust benchmarking of anticipated results from quantum computers and application of coupled-cluster techniques to more strongly correlated molecules.

Journal ArticleDOI
01 Jul 2021
TL;DR: In this article, the authors discuss the utilization of Variational Quantum Solver (VQE) and recently introduced Generalized Unitary Coupled Cluster (GUCC) formalism for the diagonalization of downfolded/effective Hamiltonians in active spaces.
Abstract: In this paper we discuss the utilization of Variational Quantum Solver (VQE) and recently introduced Generalized Unitary Coupled Cluster (GUCC) formalism for the diagonalization of downfolded/effective Hamiltonians in active spaces. In addition to effective Hamiltonians defined by the downfolding of a subset of virtual orbitals we also consider their form defined by freezing core orbitals, which enables us to deal with larger systems. We also consider various solvers to identify solutions of the GUCC equations. We use N$_2$, H$_2$O, and C$_2$H$_4$, and benchmark systems to illustrate the performance of the combined framework.

Journal ArticleDOI
TL;DR: The PNO-RCCSD(T)-F12-F12 algorithm as mentioned in this paper is an extension of the PNOR/UCCSD (T) method with explicit correlation and perturbative triples corrections.
Abstract: We present explicitly correlated open-shell pair natural orbital local coupled-cluster methods, PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. The methods are extensions of our previously reported PNO-R/UCCSD methods (J. Chem. Theory Comput., 2020, 16, 3135-3151, https://pubs.acs.org/doi/10.1021/acs.jctc.0c00192) with additions of explicit correlation and perturbative triples corrections. The explicit correlation treatment follows the spin-orbital CCSD-F12b theory using Ansatz 3*A, which is found to yield comparable or better basis set convergence than the more rigorous Ansatz 3C in computed ionization potentials and reaction energies using double- to quaduple-ζ basis sets. The perturbative triples correction is adapted from the spin-orbital (T) theory to use triples natural orbitals (TNOs). To address the coupling due to off-diagonal Fock matrix elements, the local triples amplitudes are iteratively solved using small domains of TNOs, and a semicanonical (T0) domain correction with larger domains is applied to reduce the domain errors. The performance of the methods is demonstrated through benchmark calculations on ionization potentials, radical stabilization energies, reaction energies of fragmentations and rearrangements in radical cations, and spin-state energy differences of iron complexes. For a few test sets where canonical calculations are feasible, PNO-RCCSD(T)-F12 results agree with the canonical ones to within 0.4 kcal mol-1, and this maximum error is reduced to below 0.2 kcal mol-1 when large local domains are used. For larger systems, results using different thresholds for the local approximations are compared to demonstrate that 1 kcal mol-1 level of accuracy can be achieved using our default settings. For a couple of difficult cases, it is demonstrated that the errors from individual approximations are only a fraction of 1 kcal mol-1, and the overall accuracy of the method does not rely on error compensations. In contrast to canonical calculations, the use of spin-orbitals does not lead to a significant increase of computational time and memory usage in the most expensive steps of PNO-R/UCCSD(T)-F12 calculations. The only exception is the iterative solution of the (T) amplitudes, which can be avoided without significant errors by using a perturbative treatment of the off-diagonal coupling, known as (T1) approximation. For most systems, even the semicanonical approximation (T0) leads only to small errors in relative energies. Our program is well parallelized and capable of computing accurate correlation energies for molecules with 100-200 atoms using augmented triple-ζ basis sets in less than a day of elapsed time on a small computer cluster.

Journal ArticleDOI
TL;DR: In this article, the structure of the energy landscape of variational coupled-cluster (VCC) was explored and compared with the traditional version (TCC) in the case of paired double excitations (pCCD).
Abstract: In single-reference coupled-cluster (CC) methods, one has to solve a set of non-linear polynomial equations in order to determine the so-called amplitudes which are then used to compute the energy and other properties. Although it is of common practice to converge to the (lowest-energy) ground-state solution, it is also possible, thanks to tailored algorithms, to access higher-energy roots of these equations which may or may not correspond to genuine excited states. Here, we explore the structure of the energy landscape of variational CC (VCC) and we compare it with its (projected) traditional version (TCC) in the case where the excitation operator is restricted to paired double excitations (pCCD). By investigating two model systems (the symmetric stretching of the linear \ce{H4} molecule and the continuous deformation of the square \ce{H4} molecule into a rectangular arrangement) in the presence of weak and strong correlations, the performance of VpCCD and TpCCD are gauged against their configuration interaction (CI) equivalent, known as doubly-occupied CI (DOCI), for reference Slater determinants made of ground- or excited-state Hartree-Fock orbitals or state-specific orbitals optimized directly at the VpCCD level. The influence of spatial symmetry breaking is also investigated.

Journal ArticleDOI
TL;DR: It is demonstrated theoretically and numerically that laser-driven many-electron dynamics, as described by bivariational time-dependent coupled-cluster (CC) theory, may be analyzed in terms of stationary-state populations and the equation-of-motion projector emerges as the most promising approach to stationary- state populations.
Abstract: We demonstrate theoretically and numerically that laser-driven many-electron dynamics, as described by bivariational time-dependent coupled-cluster (CC) theory, may be analyzed in terms of stationary-state populations. Projectors heuristically defined from linear response theory and equation-of-motion CC theory are proposed for the calculation of stationary-state populations during interaction with laser pulses or other external forces, and conservation laws of the populations are discussed. Numerical tests of the proposed projectors, involving both linear and nonlinear optical processes for He and Be atoms and for LiH, CH+, and LiF molecules show that the laser-driven evolution of the stationary-state populations at the coupled-cluster singles-and-doubles (CCSD) level is very close to that obtained by full configuration interaction (FCI) theory, provided that all stationary states actively participating in the dynamics are sufficiently well approximated. When double-excited states are important for the dynamics, the quality of the CCSD results deteriorates. Observing that populations computed from the linear response projector may show spurious small-amplitude, high-frequency oscillations, the equation-of-motion projector emerges as the most promising approach to stationary-state populations.

Journal ArticleDOI
TL;DR: In this article, a variational quantum eigensolver (VQE) algorithm combined with the unitary coupled cluster (UCC) ansatz has been developed for the quantum computation of molecular energies and wave functions within the Born-Oppenheimer approximation.
Abstract: The variational quantum eigensolver (VQE) algorithm combined with the unitary coupled cluster (UCC) ansatz has been developed for the quantum computation of molecular energies and wave functions within the Born-Oppenheimer approximation. Herein, this approach is extended to multicomponent systems to enable the quantum mechanical treatment of more than one type of particle, such as electrons and positrons or electrons and nuclei, without invoking the Born-Oppenheimer approximation. Specifically, we introduce the multicomponent unitary coupled cluster (mcUCC) method combined with the VQE algorithm for the calculation of ground-state energies and wave functions as well as the multicomponent equation-of-motion (mcEOM) method for the calculation of excitation energies. These methods are developed within the nuclear-electronic orbital (NEO) framework and are formulated in the qubit basis to enable implementations on quantum computers. Moreover, these methods are used to calculate the ground-state energy and excitation energies of positronium hydride, where both electrons and the positron are treated quantum mechanically, as well as the H2 molecule, where both electrons and one proton are treated quantum mechanically. These applications validate the implementation and provide benchmark data for future calculations. The errors due to Trotterization of the mcUCC ansatz are also analyzed. This formalism, as well as the accompanying computer code, will serve as the basis for applications to more complex multicomponent systems, such as simulations of photoinduced nonadiabatic molecular processes, on both classical and quantum computers.

Posted ContentDOI
23 Jul 2021-ChemRxiv
TL;DR: In this paper, a general-purpose, highly transferable artificial intelligence-quantum mechanical method 1 (AIQM1) is introduced. But the method is not suitable for high-level quantum mechanics.
Abstract: High-level quantum mechanical (QM) calculations are indispensable for accurate explanation of natural phenomena on the atomistic level. Their staggering computational cost, however, poses great limitations, which luckily can be lifted to a great extent by exploiting advances in artificial intelligence (AI). Here we introduce the general-purpose, highly transferable artificial intelligence–quantum mechanical method 1 (AIQM1). It approaches the accuracy of the ‘gold-standard’ coupled cluster QM method with low computational speed of the approximate low-level semiempirical QM methods. AIQM1 can provide accurate ground-state energies for diverse organic compounds as well as geometries for even challenging systems such as large conjugated compounds (fullerene C60) close to experiment. Noteworthy, our method’s accuracy is also good for ions and excited-state properties, although the neural network part of AIQM1 was never fitted to these properties.

Journal ArticleDOI
TL;DR: In this paper, the authors present an approach to calculate Auger decay rates by combining Feshbach-Fano resonance theory with the equation-of-motion coupled-cluster single double (EOM-CCSD) framework.
Abstract: X-ray absorption creates electron vacancies in the core shell. These highly excited states often relax by Auger decay—an autoionization process in which one valence electron fills the core hole and another valence electron is ejected into the ionization continuum. Despite the important role of Auger processes in many experimental settings, their first-principles modeling is challenging, even for small systems. The difficulty stems from the need to describe many-electron continuum (unbound) states, which cannot be tackled with standard quantum-chemistry methods. We present a novel approach to calculate Auger decay rates by combining Feshbach–Fano resonance theory with the equation-of-motion coupled-cluster single double (EOM-CCSD) framework. We use the core–valence separation scheme to define projectors into the bound (square-integrable) and unbound (continuum) subspaces of the full function space. The continuum many-body decay states are represented by products of an appropriate EOM-CCSD state and a free-electron state, described by a continuum orbital. The Auger rates are expressed in terms of reduced quantities, two-body Dyson amplitudes (objects analogous to the two-particle transition density matrix), contracted with two-electron bound-continuum integrals. Here, we consider two approximate treatments of the free electron: a plane wave and a Coulomb wave with an effective charge, which allow us to evaluate all requisite integrals analytically; however, the theory can be extended to incorporate a more sophisticated description of the continuum orbital.