scispace - formally typeset
Search or ask a question

Showing papers on "Energy harvesting published in 2009"


Journal ArticleDOI
TL;DR: A new method based on the exploitation of the dynamical features of stochastic nonlinear oscillators is shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches.
Abstract: Ambient energy harvesting has been in recent years the recurring object of a number of research efforts aimed at providing an autonomous solution to the powering of small-scale electronic mobile devices. Among the different solutions, vibration energy harvesting has played a major role due to the almost universal presence of mechanical vibrations. Here we propose a new method based on the exploitation of the dynamical features of stochastic nonlinear oscillators. Such a method is shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.

1,055 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the design and analysis of a novel energy harvesting device that uses magnetic levitation to produce an oscillator with a tunable resonance and derived the governing equations for the mechanical and electrical domains to show the designed system reduces to the form of a Duffing oscillator under both static and dynamic loads.

909 citations


Journal ArticleDOI
TL;DR: In this article, the authors summarized recent energy harvesting results and their power management circuits and showed that rectification and DC-DC conversion are becoming able to efficiently convert the power from these energy harvesters.
Abstract: More than a decade of research in the field of thermal, motion, vibration and electromagnetic radiation energy harvesting has yielded increasing power output and smaller embodiments. Power management circuits for rectification and DC–DC conversion are becoming able to efficiently convert the power from these energy harvesters. This paper summarizes recent energy harvesting results and their power management circuits.

737 citations


Proceedings Article
01 Jan 2009
TL;DR: This paper summarizes recent energy harvesting results and their power management circuits.
Abstract: More than a decade of research in the field of thermal, motion, vibration and electromagnetic radiation energy harvesting has yielded increasing power output and smaller embodiments. Power management circuits for rectification and DC-DC conversion are becoming able to efficiently convert the power from these energy harvesters. This paper summarizes recent energy harvesting results and their power management circuits.

711 citations


Journal ArticleDOI
22 Dec 2009
TL;DR: A bias-flip rectifier that can improve upon the power extraction capability of existing full-bridge rectifiers by up to 4.2× is presented and an efficient control circuit with embedded DC-DC converters that can share their filter inductor with the bias- FLIP rectifier thereby reducing the volume and component count of the overall solution is demonstrated.
Abstract: Energy harvesting is an emerging technology with applications to handheld, portable and implantable electronics. Harvesting ambient vibration energy through piezoelectric (PE) means is a popular energy harvesting technique that can potentially supply 10 to 100's of µW of available power [1]. One of the limitations of existing PE harvesters is in their interface circuitry. Commonly used full-bridge rectifiers and voltage doublers [2] severely limit the electrical power extractable from a PE harvesting element. Further, the power consumed in the control circuits of these harvesters reduces the amount of usable electrical power. In this paper, a bias-flip rectifier that can improve upon the power extraction capability of existing full-bridge rectifiers by up to 4.2× is presented. An efficient control circuit with embedded DC-DC converters that can share their filter inductor with the bias-flip rectifier thereby reducing the volume and component count of the overall solution is demonstrated.

527 citations


Journal ArticleDOI
TL;DR: In this paper, both hardening and softening response within the quadratic potential field of a power generating piezoelectric beam (with a permanent magnet end mass) is invoked by tuning nonlinear magnetic interactions.
Abstract: We model and experimentally validate a nonlinear energy harvester capable of bidirectional hysteresis. In particular, both hardening and softening response within the quadratic potential field of a power generating piezoelectric beam (with a permanent magnet end mass) is invoked by tuning nonlinear magnetic interactions. Not only is this technique shown to increase the bandwidth of the device but experimental results additionally verify the capability to outperform linear resonance. Engaging this nonlinear phenomenon is ideally suited to efficiently harvest energy from ambient excitations with slowly varying frequencies.

462 citations


Journal ArticleDOI
TL;DR: In this paper, the L-shaped beam-mass structure was used as a new piezoelectric energy harvester configuration and a linear distributed parameter model was developed to predict the electromechanically coupled voltage response and displacement response of the beam structure.
Abstract: Cantilevered piezoelectric energy harvesters have been extensively investigated in the literature of energy harvesting. As an alternative to conventional cantilevered beams, this article presents the L-shaped beam-mass structure as a new piezoelectric energy harvester configuration. This structure can be tuned to have the first two natural frequencies relatively close to each other, resulting in the possibility of a broader band energy harvesting system. This article describes the important features of the L-shaped piezoelectric energy harvester configuration and develops a linear distributed parameter model for predicting the electromechanically coupled voltage response and displacement response of the harvester structure. After deriving the coupled distributed parameter model, a case study is presented to investigate the electrical power generation performance of the L-shaped energy harvester. A direct application of the L-shaped piezoelectric energy harvester configuration is proposed for use as landing gears in unmanned air vehicle applications and a case study is presented where the results of the L-shaped — energy harvester — landing gear are favorably compared against the published experimental results of a curved beam configuration used for the same purpose.

363 citations


Journal ArticleDOI
TL;DR: In this paper, general principles for the exploitation of nonlinear oscillators in energy harvesting that provide useful leads for the realization of micropower generators of practical interest are presented, using nonlinear stochastic dynamics.
Abstract: Vibration to electricity energy conversion strategies are discussed by using nonlinear stochastic dynamics. General principles for the exploitation of nonlinear oscillators in energy harvesting that provide useful leads for the realization of micropower generators of practical interest are presented.

349 citations


Journal ArticleDOI
TL;DR: In this article, the mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations.
Abstract: Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

336 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of damping on power optimality of a piezoelectric vibration-based energy harvester, which utilizes a harvesting circuit employing an inductor and a resistive load.

314 citations


Journal ArticleDOI
TL;DR: In this article, the impact of composition, orientation, and microstructure on the piezoelectric properties of perovskite thin films such as PbZr1−xTixO3 (PZT) is reviewed.
Abstract: Piezoelectric microelectromechanical systems (MEMS) offer the opportunity for high-sensitivity sensors and large displacement, low-voltage actuators. In particular, recent advances in the deposition of perovskite thin films point to a generation of MEMS devices capable of large displacements at complementary metal oxide semiconductor-compatible voltage levels. Moreover, if the devices are mounted in mechanically noisy environments, they also can be used for energy harvesting. Key to all of these applications is the ability to obtain high piezoelectric coefficients and retain these coefficients throughout the microfabrication process. This article will review the impact of composition, orientation, and microstructure on the piezoelectric properties of perovskite thin films such as PbZr1−xTixO3 (PZT). Superior piezoelectric coefficients (e31, f of −18 C/m2) are achieved in {001}-oriented PbZr0.52Ti0.48O3 films with improved compositional homogeneity on Si substrates. The advent of such high piezoelectric responses in films opens up a wide variety of possible applications. A few examples of these, including low-voltage radio frequency MEMS switches and resonators, actuators for millimeter-scale robotics, droplet ejectors, energy scavengers for unattended sensors, and medical imaging transducers, will be discussed.

Journal ArticleDOI
TL;DR: A battery less solar-harvesting circuit that is tailored to the needs of low-power applications and discusses how the scavenger improves upon state-of-the-art technology with a measured power consumption of less than 1 mW.
Abstract: The limited battery lifetime of modern embedded systems and mobile devices necessitates frequent battery recharging or replacement. Solar energy and small-size photovoltaic (PV) systems are attractive solutions to increase the autonomy of embedded and personal devices attempting to achieve perpetual operation. We present a battery less solar-harvesting circuit that is tailored to the needs of low-power applications. The harvester performs maximum-power-point tracking of solar energy collection under nonstationary light conditions, with high efficiency and low energy cost exploiting miniaturized PV modules. We characterize the performance of the circuit by means of simulation and extensive testing under various charging and discharging conditions. Much attention has been given to identify the power losses of the different circuit components. Results show that our system can achieve low power consumption with increased efficiency and cheap implementation. We discuss how the scavenger improves upon state-of-the-art technology with a measured power consumption of less than 1 mW. We obtain increments of global efficiency up to 80%, diverging from ideality by less than 10%. Moreover, we analyze the behavior of super capacitors. We find that the voltage across the supercapacitor may be an unreliable indicator for the stored energy under some circumstances, and this should be taken into account when energy management policies are used.

Journal ArticleDOI
TL;DR: In this article, an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates.

Journal ArticleDOI
TL;DR: In this paper, the impact of a moving mass on piezoelectric bending structures has been investigated in order to determine the parameters influencing the device performances in terms of energy harvesting.
Abstract: Vibration energy harvesters can replace batteries and serve as clean and renewable energy sources in low-consumption wireless applications. Harvesters delivering sufficient power for sensors operating in an industrial environment have been developed, but difficulties are encountered when the devices to be powered are located on the human body. In this case, classical harvester designs (resonant systems) are not adapted to the low-frequency and high-amplitude characteristics of the motion. For this reason, we propose in this paper an alternative design based on the impact of a moving mass on piezoelectric bending structures. A model of the system is presented and analysed in order to determine the parameters influencing the device performances in terms of energy harvesting. A prototype of the impact harvester is experimentally characterized: for a generator occupying approximately 25 cm3 and weighing 60 g, an output power of 47 µW was measured across a resistive load when the device was rotated by 180° each second. 600 µW were obtained for a 10 Hz frequency and 10 cm amplitude linear motion. Further optimization of the piezoelectric transducer is possible, allowing a large increase in these values, bringing the power density for the two cases respectively to 10 and 120 µW cm−3.

Journal ArticleDOI
TL;DR: In this paper, an equivalent circuit model, which bridges structural modeling and electrical simulation, is employed to solve the problem of accurate modeling of such electromechanical coupling systems, when complicated mechanical conditions and practical energy harvesting circuit are considered in system design.
Abstract: Last decade has seen growing research interest in vibration energy harvesting using piezoelectric materials. When developing piezoelectric energy harvesting systems, it is advantageous to establish certain analytical or numerical model to predict the system performance. In the last few years, researchers from mechanical engineering established distributed models for energy harvester but simplified the energy harvesting circuit in the analytical derivation. While, researchers from electrical engineering concerned the modeling of practical energy harvesting circuit but tended to simplify the structural and mechanical conditions. The challenges for accurate modeling of such electromechanical coupling systems remain when complicated mechanical conditions and practical energy harvesting circuit are considered in system design. In this article, the aforementioned problem is addressed by employing an equivalent circuit model, which bridges structural modeling and electrical simulation. First, the parameters in t...

Proceedings ArticleDOI
17 May 2009
TL;DR: This paper presents a fast, efficient and reliable solar prediction algorithm, namely, Weather-Conditioned Moving Average (WCMA) that is capable of exploiting the solar energy more efficiently than state-of-the-art energy prediction algorithms (e.g. Exponential Weightedmoving Average EWMA).
Abstract: Solar panels are frequently used in wireless sensor nodes because they can theoretically provide quite a bit of harvested energy. However, they are not a reliable, consistent source of energy because of the Sun's cycles and the everchanging weather conditions. Thus, in this paper we present a fast, efficient and reliable solar prediction algorithm, namely, Weather-Conditioned Moving Average (WCMA) that is capable of exploiting the solar energy more efficiently than state-of-the-art energy prediction algorithms (e.g. Exponential Weighted Moving Average EWMA). In particular, WCMA is able to effectively take into account both the current and past-days weather conditions, obtaining a relative mean error of only 10%. When coupled with energy management algorithm, it can achieve gains of more than 90% in energy utilization with respect to EWMA under the real working conditions of the Shimmer node, an active sensing platform for structural health monitoring.

Journal ArticleDOI
TL;DR: In this article, the authors report a multimodal energy harvesting device that combines electromagnetic and piezoelectric energy harvesting mechanism, which consists of a cantilever beam with an attached permanent magnet which oscillates within a stationary coil fixed to the top of the package.
Abstract: In this study, we report a multimodal energy harvesting device that combines electromagnetic and piezoelectric energy harvesting mechanism. The device consists of piezoelectric crystals bonded to a cantilever beam. The tip of the cantilever beam has an attached permanent magnet which, oscillates within a stationary coil fixed to the top of the package. The permanent magnet serves two purpose (i) acts as a tip mass for the cantilever beam and lowers the resonance frequency, and (ii) acts as a core which oscillates between the inductive coils resulting in electric current generation through Faraday's effect. Thus, this design combines the energy harvesting from two different mechanisms, piezoelectric and electromagnetic, on the same platform. The prototype system was optimized using the finite element software, ANSYS, to find the resonance frequency and stress distribution. The power generated from the fabricated prototype was found to be 0.25 W using the electromagnetic mechanism and 0.25 mW using the piez...

Journal ArticleDOI
TL;DR: In this article, two independent energy harvesting techniques are coupled to provide higher electrical damping within the system, and a theoretical model has been developed which closely agrees with the experimental results, which illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.
Abstract: Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.

Journal ArticleDOI
TL;DR: A novel wireless sensor system is presented that harvests vibrations of the bridge created by passing traffic, which is converted into usable electrical energy by means of a linear electromagnetic generator.
Abstract: The task of structural health monitoring (SHM) of aging highway bridges and overpasses is important not only from the point of preventing economic losses from traffic delays and detours but also is a matter of preventing catastrophic failures and loss of human life. In recent years, wireless sensor technologies have been used extensively to develop SHM platforms for bridges. A limitation of wireless sensors is the finite life span of batteries and high cost of battery replacements, which make such systems prohibitively expensive in many cases. Energy harvesting is a solution capable to alleviate this problem. A novel wireless sensor system is presented that harvests vibrations of the bridge created by passing traffic, which is converted into usable electrical energy by means of a linear electromagnetic generator. Utilization of an electromagnetic generator allows harvesting of up to 12.5 mW of power in the resonant mode with the frequency of excitation at 3.1 Hz, in this particular design. The novelty of the system also includes tight integration of the power generator and a smart algorithm for energy conversion that switches between the low-power mode and the impedance matching mode. Finally, results of field experiments are presented in which the wireless system is operated exclusively by the harvested energy of vibration on a rural highway bridge with low traffic volume.

Journal ArticleDOI
TL;DR: In this article, the role of non-linear piezoelectric relationship is considered on the performance of a vibration-based energy harvester using a Poincare-Lindstedt perturbation analysis.
Abstract: Advances in electronic and consumer technology are increasing the need for smaller, more efficient energy sources Thus vibration-based energy harvesting, the scavenging of energy from existing ambient vibration sources and its conversion to useful electrical power, is becoming an increasingly attractive alternative to traditional power sources such as batteries Energy harvesting devices have been developed based on a number of electromechanical coupling mechanisms and their design must be optimized to produce the maximum output for given environmental conditions While the role of non-linearities in the components has been shown to be significant in terms of the overall device efficiency, few studies have systematically investigated their influence on the system performance In this work the role of a non-linear piezoelectric relationship is considered on the performance of a vibration-based energy harvester Using a Poincare-Lindstedt perturbation analysis the response of the harvesting system is appro

Journal ArticleDOI
TL;DR: In this article, the authors introduce a multifunctional structural design combining superior mechanical wave filtering properties and energy harvesting capabilities based on the ability of most periodic structures to forbid elastic waves from propagating within specific frequency ranges known as phononic bandgaps.
Abstract: The paper introduces a multifunctional structural design combining superior mechanical wave filtering properties and energy harvesting capabilities. The proposed concept is based on the ability of most periodic structures to forbid elastic waves from propagating within specific frequency ranges known as phononic bandgaps. The bandgap density and the resulting filtering effect are dramatically enhanced through the introduction of a microstructure consisting of stiff inclusions which resonate at specific frequencies and produce significant strain and energy localization. Energy harvesting is achieved as a result of the conversion of the localized kinetic energy into electrical energy through the piezoelectric effect featured by the material in the microstructure. The idea is illustrated through the application to hexagonal truss-core honeycombs featuring periodically distributed stiff cantilever beams provided with piezoelectric electrodes. The multifunctional capability results from the localized oscillatory phenomena exhibited by the cantilevers for excitations falling in the neighborhood of the bending fundamental frequencies of the beams. This application is of particular interest for advanced aerospace and mechanical engineering applications where distinct capabilities are simultaneously pursued and weight containment represents a critical design constraint. The scalability of the analysis suggests the possibility to miniaturize the design to the microscale for microelectromechanical systems (MEMS) applications such as self-powered microsystems and wireless sensors.

Journal ArticleDOI
TL;DR: A prototyped circuit that precharges, detects, and synchronizes to a variable voltage-constrained capacitor verifies experimentally that harvesting energy electrostatically from vibrations is possible and shows that, on average, the system harvests 9.7 nJ/cycle.
Abstract: The self-powering, long-lasting, and functional features of embedded wireless microsensors appeal to an ever-expanding application space in monitoring, control, and diagnosis for military, commercial, industrial, space, and biomedical applications. Extended operational life, however, is difficult to achieve when power-intensive functions like telemetry draw whatever little energy is available from energy-storage microdevices like thin-film lithium-ion batteries and/or microscale fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and indefinitely extending system lifetime. In this paper, a prototyped circuit that precharges, detects, and synchronizes to a variable voltage-constrained capacitor verifies experimentally that harvesting energy electrostatically from vibrations is possible. Experimental results show that, on average (excluding gate-drive and control losses), the system harvests 9.7 nJ/cycle by investing 1.7 nJ/cycle, yielding a net energy gain of approximately 8 nJ/cycle at an average of 1.6 ?W (in typical applications) for every 200 pF variation. Projecting and including reasonable gate-drive and controller losses reduces the net energy gain to 6.9 nJ/cycle at 1.38 ?W.

Journal ArticleDOI
TL;DR: In this paper, a detailed dimensionless analysis is given for predicting the locations of the strain nodes of a cantilevered beam in the absence and presence of a tip mass, and the cancellation issue is not peculiar to clamped-free boundary conditions, dimensionless data of modal strain nodes are tabulated for some other practical boundary condition pairs.
Abstract: For the past five years, cantilevered beams with piezoceramic layer(s) have been frequently used as piezoelectric energy harvesters for vibration-to-electric energy conversion. Typically, the energy harvester beam is located on a vibrating host structure and the dynamic strain induced in the piezoceramic layer(s) results in an alternating voltage output across the electrodes. Vibration modes of a cantilevered piezoelectric energy harvester other than the fundamental mode have certain strain nodes where the dynamic strain distribution changes sign in the direction of beam length. It is theoretically explained and experimentally demonstrated in this paper that covering the strain nodes of vibration modes with continuous electrodes results in strong cancellations of the electrical outputs. A detailed dimensionless analysis is given for predicting the locations of the strain nodes of a cantilevered beam in the absence and presence of a tip mass. Since the cancellation issue is not peculiar to clamped-free boundary conditions, dimensionless data of modal strain nodes are tabulated for some other practical boundary condition pairs and these data can be useful in modal actuation problems as well. How to avoid the cancellation problem in energy harvesting by using segmented electrode pairs is described for single-mode and multimode vibrations of a cantilevered piezoelectric energy harvester. An electrode configuration-based side effect of using a large tip mass on the electrical response at higher vibration modes is discussed theoretically and demonstrated experimentally.

Journal ArticleDOI
TL;DR: In this paper, a numerical model based on the Navier-Stokes equations is presented to investigate the performance of a bioinspired flapping foil system in low Reynolds numbers.
Abstract: As demonstrated in recent studies, the bioinspired flapping foils are capable of harvesting kinetic energy from incoming wind or current. A practical measure to achieve this is via the coupling between different modes in a system with multiple degrees of freedom. A typical scenario includes external activation of one motion mode and extracting the mechanical energy from other modes that follow. In this study we create a numerical model based upon the Navier–Stokes equations to investigate the performance of such a system in low Reynolds numbers. The effects of both the mechanical design and the operational parameters are examined. Specifically, we concentrate on the vorticity control mechanisms involved in the process, and demonstrate that through vortex-body interactions energy of the leading-edge vortices can be partially recovered to enhance the energy harvesting capacity.

Journal ArticleDOI
TL;DR: In this paper, a computational approach to analyze and design piezoelectric energy harvesting systems composed of layered plates and shells connected to an electrical circuit was developed, based on the finite element method.
Abstract: We develop a computational approach to analyze and design piezoelectric energy harvesting systems composed of layered plates and shells connected to an electrical circuit The finite element method

Journal ArticleDOI
TL;DR: It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogsenerator.
Abstract: Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from t...

Journal ArticleDOI
TL;DR: In this paper, a nonlinear beam converter with white-noise vibration was proposed to improve energy harvesting from wide-spectrum vibrations in a cantilever beam with added nonlinearity, which was simulated by using a MATLAB® Stochastic Differential Equation (SDE) Toolbox with a white noise vibration.

Journal ArticleDOI
TL;DR: The state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed.
Abstract: Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed.

Proceedings ArticleDOI
01 Jan 2009
TL;DR: In this article, a nonlinear electromagnetic energy harvesting device with a broadly resonant response was presented, which is generated by a particular arrangement of magnets in conjunction with an iron-cored stator.
Abstract: In this paper we present a nonlinear electromagnetic energy harvesting device that has a broadly resonant response. The nonlinearity is generated by a particular arrangement of magnets in conjunction with an iron-cored stator. We show the resonant response of the system to both pure-tone excitation and narrow-band random excitation. In addition to the primary resonance, the super-harmonic resonances of the harvester are also investigated and we show that the corresponding mechanical up-conversion of the excitation frequency may be useful for energy harvesting. The harvester is modeled using a Duffing-type equation and the results compared to the experimental data.Copyright © 2009 by ASME

Journal ArticleDOI
TL;DR: To explore integrated solar energy harvesting as a power source for low power systems, an array of energy scavenging photodiodes based on a passive-pixel architecture for CMOS imagers has been fabricated together with storage capacitors implemented using on-chip interconnect in a 0.35-mum bulk process.
Abstract: To explore integrated solar energy harvesting as a power source for low power systems, an array of energy scavenging photodiodes based on a passive-pixel architecture for CMOS imagers has been fabricated together with storage capacitors implemented using on-chip interconnect in a 0.35-mum bulk process. Integrated vertical plate capacitors enable dense energy storage without limiting optical efficiency. Tests were conducted with both a white light source and a green laser. Measurements indicate that 225 muW/mm2 output power may be generated by white light with an intensity of 20 kLUX.