scispace - formally typeset
Search or ask a question

Showing papers on "Energy source published in 2020"


Journal ArticleDOI
Jian Duan1, Xuan Tang1, Haifeng Dai1, Ying Yang1, Wangyan Wu1, Xuezhe Wei1, Yunhui Huang1 
28 Mar 2020
TL;DR: In this paper, the authors comprehensively review the safety features of lithium-ion batteries and the failure mechanisms of cathodes, anodes, separators and electrolyte and propose corresponding solutions for designing safer components.
Abstract: Lithium-ion batteries (LIBs), with relatively high energy density and power density, have been considered as a vital energy source in our daily life, especially in electric vehicles. However, energy density and safety related to thermal runaways are the main concerns for their further applications. In order to deeply understand the development of high energy density and safe LIBs, we comprehensively review the safety features of LIBs and the failure mechanisms of cathodes, anodes, separators and electrolyte. The corresponding solutions for designing safer components are systematically proposed. Additionally, the in situ or operando techniques, such as microscopy and spectrum analysis, the fiber Bragg grating sensor and the gas sensor, are summarized to monitor the internal conditions of LIBs in real time. The main purpose of this review is to provide some general guidelines for the design of safe and high energy density batteries from the views of both material and cell levels. Safety of lithium-ion batteries (LIBs) with high energy density becomes more and more important in the future for EVs development. The safety issues of the LIBs are complicated, related to both materials and the cell level. To ensure the safety of LIBs, in-depth understanding of the safety features, precise design of the battery materials and real-time monitoring/detection of the cells should be systematically considered. Here, we specifically summarize the safety features of the LIBs from the aspects of their voltage and temperature tolerance, the failure mechanism of the LIB materials and corresponding improved methods. We further review the in situ or operando techniques to real-time monitor the internal conditions of LIBs.

390 citations


Journal ArticleDOI
TL;DR: A comprehensive review of studies which investigated, analyzed, quantified and utilized the effect of temporal, spatial and spatiotemporal complementarity between renewable energy sources is presented in this paper.

382 citations


Journal ArticleDOI
TL;DR: Recent evidence implicating altered lipid metabolism in different aspects of the cancer phenotype is summarized and potential strategies by which targeting lipid metabolism could provide a therapeutic window for cancer treatment are discussed.

367 citations


Journal ArticleDOI
TL;DR: The empirical study shows that for BRICS countries, unlike coal consumption, coal rents have a significant but negative impact on CO2 emissions, and for policymakers it is vital to reinforce the use of stringent regulations as these economies opens up to more use of coal energy.

344 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the nexus between energy consumption, economic growth and CO2 emission in Pakistan by using annual time series data from 1965 to 2015, and the estimated results of ARDL indicate that energy consumption and economic growth increase the CO2 emissions in Pakistan both in short run and long run.
Abstract: Developing countries are facing the problem of environmental degradation. Environmental degradation is caused by the use of non-renewable energy consumptions for economic growth but the consequences of environmental degradation cannot be ignored. This primary purpose of this study is to investigate the nexus between energy consumption, economic growth and CO2 emission in Pakistan by using annual time series data from 1965 to 2015. The estimated results of ARDL indicate that energy consumption and economic growth increase the CO2 emissions in Pakistan both in short run and long run. Based on the estimated results it is recommended that policy maker in Pakistan should adopt and promote such renewable energy sources that will help to meet the increased demand for energy by replacing old traditional energy sources such as coal, gas, and oil. Renewable energy sources are reusable that can reduce the CO2 emissions and also ensure sustainable economic development of Pakistan.

333 citations


Journal ArticleDOI
TL;DR: This review outlines the diverse roles of amino acids within the tumor and in the tumor microenvironment and identifies potential metabolic liabilities as targets for therapeutic intervention and illuminates a promising new approach to cancer therapeutics.
Abstract: Over 90 years ago, Otto Warburg's seminal discovery of aerobic glycolysis established metabolic reprogramming as one of the first distinguishing characteristics of cancer1. The field of cancer metabolism subsequently revealed additional metabolic alterations in cancer by focusing on central carbon metabolism, including the citric acid cycle and pentose phosphate pathway. Recent reports have, however, uncovered substantial non-carbon metabolism contributions to cancer cell viability and growth. Amino acids, nutrients vital to the survival of all cell types, experience reprogrammed metabolism in cancer. This review outlines the diverse roles of amino acids within the tumor and in the tumor microenvironment. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, amino acid derivatives contribute to epigenetic regulation and immune responses linked to tumorigenesis and metastasis. Furthermore, in discussing the transporters and transaminases that mediate amino acid uptake and synthesis, we identify potential metabolic liabilities as targets for therapeutic intervention.

329 citations


Journal ArticleDOI
22 Apr 2020
TL;DR: A flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ that delivered a record-breaking power density and displayed a very stable performance during a 60-hour continuous operation.
Abstract: Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt·centimeter−2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4+, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human-prosthesis walking.

324 citations


Journal ArticleDOI
20 May 2020
TL;DR: It would seem prudent for individuals to consume sufficient amounts of essential nutrients to support their immune system to help them deal with pathogens should they become infected.
Abstract: The immune system protects the host from pathogenic organisms (bacteria, viruses, fungi, parasites). To deal with this array of threats, the immune system has evolved to include a myriad of specialised cell types, communicating molecules and functional responses. The immune system is always active, carrying out surveillance, but its activity is enhanced if an individual becomes infected. This heightened activity is accompanied by an increased rate of metabolism, requiring energy sources, substrates for biosynthesis and regulatory molecules, which are all ultimately derived from the diet. A number of vitamins (A, B6, B12, folate, C, D and E) and trace elements (zinc, copper, selenium, iron) have been demonstrated to have key roles in supporting the human immune system and reducing risk of infections. Other essential nutrients including other vitamins and trace elements, amino acids and fatty acids are also important. Each of the nutrients named above has roles in supporting antibacterial and antiviral defence, but zinc and selenium seem to be particularly important for the latter. It would seem prudent for individuals to consume sufficient amounts of essential nutrients to support their immune system to help them deal with pathogens should they become infected. The gut microbiota plays a role in educating and regulating the immune system. Gut dysbiosis is a feature of disease including many infectious diseases and has been described in COVID-19. Dietary approaches to achieve a healthy microbiota can also benefit the immune system. Severe infection of the respiratory epithelium can lead to acute respiratory distress syndrome (ARDS), characterised by excessive and damaging host inflammation, termed a cytokine storm. This is seen in cases of severe COVID-19. There is evidence from ARDS in other settings that the cytokine storm can be controlled by n-3 fatty acids, possibly through their metabolism to specialised pro-resolving mediators.

282 citations


Journal ArticleDOI
TL;DR: In this article, the influence of surface/interface properties of electrocatalysts and air electrodes on the performance of rechargeable Zn-air batteries, and the latest surface and interface nanoengineering progress from the micro to meso-level is surveyed.
Abstract: Among the various energy storage systems, the rechargeable Zn–air battery is one of the most promising candidates for the consumer electronic market and portable energy sources. In a Zn–air battery, surface/interface chemistry plays a key role in their performance optimization of power density, stability and rechargeable efficiency. A Zn–air battery requires gas-involved ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) reactions, always leading to complex reactions and sluggish kinetic processes at the three-phase interface, in which rational surface/interface nanoengineering at the micro and meso-level play a decisive role. In this review, we cover the influence of surface/interface properties of electrocatalysts and air electrodes on the performance of rechargeable Zn–air batteries, and the latest surface/interface nanoengineering progress from the micro to meso-level is surveyed. Moreover, the surface/interface characteristics of electrocatalysts and air electrodes at the triple-phase interface, which are closely related to the four key parameters of electrical conductivity, reaction energy barrier, reaction surface area and mass transfer behavior, are also described in detail. Based on the discussion of the latest achievements of surface/interface nanoengineering, some personal perspectives on future advanced development of rechargeable Zn–air batteries are presented as well.

274 citations


Journal ArticleDOI
TL;DR: The recent approaches to developing flexible–wearable solar cells as energy sources for supplying self-powered wearable devices and novel applications of wearable sensors/devices are summarized and reported to highlight the functionality of these practical platforms.
Abstract: Photovoltaic devices have become ideal alternatives to common energy sources due to their excellent mechanical robustness and high power conversion efficiency, which can meet the human requirements for green, inexpensive and portable electricity sources. Moreover, due to the rapid development of wearable devices, telecommunication, transportation, advanced sensors, etc., the need for green and accessible power sources for these state-of-the-art devices accompanied with appropriate mechanical stability has become a new challenge. In this regard, flexible–wearable photovoltaic platforms can be easily adapted to any device/substrate and can supply diverse electronic devices with their required energy via harvesting energy from sunlight. Similarly, photovoltaic platforms can be integrated into hybrid platforms and can be used in diverse applications. Herein, we summarize the recent approaches to developing flexible–wearable solar cells as energy sources for supplying self-powered wearable devices. In this regard, first, recent advances in transparent flexible electrodes and their diversities are reported; then, recently developed flexible solar cells and important factors for designing these platforms are summarized. Further, flexible solar cells are categorized into five different sections (i.e., perovskite, dye-sensitized, organic, fiber-shaped and textile solar cells) and their mechanisms, working principles and design criteria along with their recent advances have been discussed. Finally, novel applications of wearable sensors/devices are summarized and reported to highlight the functionality of these practical platforms.

273 citations


Journal ArticleDOI
TL;DR: In this paper, the authors define renewable energy clusters that are comprised of complementarity of different energy sources, flexibility, interconnectivity of different actors and bi-directionality of energy flows.
Abstract: The recast of the European Union Renewable Energy Directive (RED II) entered into force in December 2018, followed by the Internal Electricity Market Directive (IEMD) and Regulation (IEMR) as part of the Clean Energy for all Europeans Package. The RED II, that the 28 Member States have until June 2021 to transpose into national law, defines “Renewable Energy Communities” (RECs), introduces a governance model for them and the possibility of energy sharing within the REC. It also provides an “enabling framework” to put RECs on equal footing with other market players and to promote and facilitate their development. This article defines "renewable energy clusters" that are comprised of complementarity of different energy sources, flexibility, interconnectivity of different actors and bi-directionality of energy flows. We argue that RECs and RE clusters are socio-technical mirrors of the same concept, necessary in a renewable energy transition. To test how these new rules will fare in practice, drawing on a secondary dataset of 67 best-practice cases of consumer (co-)ownership from 18 countries, each project is assessed using the criteria of cluster potential, and for the extent that they meet the RED II governance requirements of heterogeneity of members and of ownership structure. Nine cases were identified as having cluster potential all of which were in rural areas. Of these, five projects were found to be both RECs and RE clusters. The absence of the governance and heterogeneity criteria is observed in projects that fall short of the cluster elements of flexibility, bi-directionality and interconnectivity, while cluster elements occur where the governance and heterogeneity criteria are met. When transposing the new rules into national law we recommend careful attention to encourage complementarity of renewables, RECs in urban contexts and “regulatory sandboxes” for experimentation to find the range of optimal preferential conditions of the “enabling framework”.

Journal ArticleDOI
TL;DR: The L-enantiomer of the lactate anion is formed under fully aerobic conditions and is utilized continuously in diverse cells, tissues, organs and at the whole-body level.
Abstract: Mistakenly thought to be the consequence of oxygen lack in contracting skeletal muscle we now know that the L-enantiomer of the lactate anion is formed under fully aerobic conditions and is utilized continuously in diverse cells, tissues, organs and at the whole-body level. By shuttling between producer (driver) and consumer (recipient) cells lactate fulfills at least three purposes: 1] a major energy source for mitochondrial respiration; 2] the major gluconeogenic precursor; and 3] a signaling molecule. Working by mass action, cell redox regulation, allosteric binding, and reprogramming of chromatin by lactylation of lysine residues on histones, lactate has major influences in energy substrate partitioning. The physiological range of tissue [lactate] is 0.5-20 mM and the cellular Lactate/Pyruvate ratio (L/P) can range from 10 to >500; these changes during exercise and other stress-strain responses dwarf other metabolic signals in magnitude and span. Hence, lactate dynamics have rapid and major short- and long-term effects on cell redox and other control systems. By inhibiting lipolysis in adipose via HCAR-1, and muscle mitochondrial fatty acid uptake via malonyl-CoA and CPT1, lactate controls energy substrate partitioning. Repeated lactate exposure from regular exercise results in major effects on the expression of regulatory enzymes of glycolysis and mitochondrial respiration. Lactate is the fulcrum of metabolic regulation in vivo.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the recent progress of semitransparent OSCs, concentrating on organic semiconducting materials, semi-transparent top electrode and device engineering.

Journal ArticleDOI
TL;DR: Li[Ni0.90Co0.09Ta0.01]O2 as discussed by the authors is a Ni-rich layered oxide cathode that exhibits outstanding long-term cyclability and high energy at full depth of discharge in full cells.
Abstract: The demand for energy sources with high energy densities continues to push the limits of Ni-rich layered oxides, which are currently the most promising cathode materials in automobile batteries. Although most current research is focused on extending battery life using Ni-rich layered cathodes, long-term cycling stability using a full cell is yet to be demonstrated. Here, we introduce Li[Ni0.90Co0.09Ta0.01]O2, which exhibits 90% capacity retention after 2,000 cycles at full depth of discharge (DOD) and a cathode energy density >850 Wh kg−1. In contrast, the currently most sought-after Li[Ni0.90Co0.09Al0.01]O2 cathode loses ~40% of its initial capacity within 500 cycles at full DOD. Cycling stability is achieved by radially aligned primary particles with [003] crystallographic texture that effectively dissipate the internal strain occurring in the deeply charged state, while the substitution of Ni3+ with higher valence ions induces ordered occupation of Ni ions in the Li slab and stabilizes the delithiated structure. Nickel-rich layered oxide cathodes are at the forefront of the development of automobile batteries. The authors report an atomic and microstructural engineering design for a Li[Ni0.90Co0.09Ta0.01]O2 cathode that exhibits outstanding long-term cyclability and high energy at full depth of discharge in full cells.

Journal ArticleDOI
TL;DR: The characterization of the MHETase enzyme and synergy of the two-enzyme PET depolymerization system may inform enzyme cocktail-based strategies for plastics upcycling and will inform future efforts in the biological deconstruction andUpcycling of mixed plastics.
Abstract: Plastics pollution represents a global environmental crisis. In response, microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, Ideonella sakaiensis was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically, the I. sakaiensis PETase depolymerizes PET, liberating soluble products, including mono(2-hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene glycol by MHETase. Here, we report a 1.6 A resolution MHETase structure, illustrating that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations of the catalytic itinerary predict that MHETase follows the canonical two-step serine hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates the importance of this residue for accommodation of MHET in the active site. We also demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, that MHETase does not turnover mono(2-hydroxyethyl)-furanoate or mono(2-hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and MHETase was observed for the conversion of amorphous PET film to monomers across all nonzero MHETase concentrations tested. Finally, we compare the performance of MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved PET and MHET turnover relative to the free enzymes. Together, these results offer insights into the two-enzyme PET depolymerization system and will inform future efforts in the biological deconstruction and upcycling of mixed plastics.

Journal ArticleDOI
16 Sep 2020-Joule
TL;DR: In this paper, the authors used 39 years of hourly U.S. weather data, and a macro-scale energy model to evaluate capacities and dispatch in least cost, 100% reliable electricity systems with wind and solar generation supported by long-duration storage (LDS; 10h or greater) and battery storage.

Journal ArticleDOI
15 Nov 2020-Energy
TL;DR: The main observation pinpointed is that with a proper design standard, material selection and user guideline, reusable PPE could be an effective option with lower energy consumption/environmental footprint and protecting efficiency returned on environmental footprint invested for masks.

Journal ArticleDOI
Yan Zhang1, Fang Wan1, Shuo Huang1, Shuai Wang1, Zhiqiang Niu1, Jun Chen1 
TL;DR: An aqueous Zn-ion battery that can be self-recharged by the spontaneous redox reaction between cathode and oxygen from ambient environment without external power supply is reported.
Abstract: Self-charging power systems integrating energy harvesting technologies and batteries are attracting extensive attention in energy technologies. However, the conventional integrated systems are highly dependent on the availability of the energy sources and generally possess complicated configuration. Herein, we develop chemically self-charging aqueous zinc-ion batteries with a simplified two-electrode configuration based on CaV6O16·3H2O electrode. Such system possesses the capability of energy harvesting, conversion and storage simultaneously. It can be chemically self-recharged by the spontaneous redox reaction between the discharged cathode and oxygen from the ambient environment. Chemically self-recharged zinc-ion batteries display an initial open-circuit voltage of about 1.05 V and a considerable discharge capacity of about 239 mAh g−1, indicating the excellent self-rechargeability. Impressively, such chemically self-charging zinc-ion batteries can also work well at chemical or/and galvanostatic charging hybrid modes. This work not only provides a route to design chemically self-charging energy storage, but also broadens the horizons of aqueous zinc-ion batteries. Self-charging power systems integrating energy generation and storage are receiving consideration attention. Here the authors report an aqueous Zn-ion battery that can be self-recharged by the spontaneous redox reaction between cathode and oxygen from ambient environment without external power supply.

Journal ArticleDOI
TL;DR: The five site selection stages, criteria selection, data normalization, criteria weighting, alternative evaluation and result validation, are revealed by content analysis and it is found that different energy sources emphasize different criteria; however, some similarities exist.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss current and future trends in biomass pyrolysis, e.g., microwave, solar, plasma, and co-polymerization of biomass with synthetic polymers and sewage.
Abstract: Biomass pyrolysis is a promising renewable sustainable source of fuels and petrochemical substitutes. It may help in compensating the progressive consumption of fossil-fuel reserves. The present article outlines biomass pyrolysis. Various types of biomass used for pyrolysis are encompassed, e.g., wood, agricultural residues, sewage. Categories of pyrolysis are outlined, e.g., flash, fast, and slow. Emphasis is laid on current and future trends in biomass pyrolysis, e.g., microwave pyrolysis, solar pyrolysis, plasma pyrolysis, hydrogen production via biomass pyrolysis, co-pyrolysis of biomass with synthetic polymers and sewage, selective preparation of high-valued chemicals, pyrolysis of exotic biomass (coffee grounds and cotton shells), comparison between algal and terrestrial biomass pyrolysis. Specific future prospects are investigated, e.g., preparation of supercapacitor biochar materials by one-pot one-step pyrolysis of biomass with other ingredients, and fabricating metallic catalysts embedded on biochar for removal of environmental contaminants. The authors predict that combining solar pyrolysis with hydrogen production would be the eco-friendliest and most energetically feasible process in the future. Since hydrogen is an ideal clean fuel, this process may share in limiting climate changes due to CO2 emissions.

Journal ArticleDOI
TL;DR: The current further validates that the Environmental Kuznet Curve Hypothesis holds for this panel of EU countries examined and affirms that nonrenewable energy consumption and economic growth increase carbon emission flaring while renewable energy consumption declines ecological footprint.

Journal ArticleDOI
TL;DR: Hydrogen technologies and fuel cells offer an alternative and improved solution for a decarbonised energy future and are being deployed not only for transport, but also as a means of the storage of excess energy from, for example, wind and solar farms.

Journal ArticleDOI
TL;DR: This review was designed to be a comprehensive source of knowledge regarding the unique aspects of hydrocarbon microbiology that may be useful for planning future biodegradation experiments and is a starting point for wider debate regarding the limitations and possible improvements of currently employed bioremediation strategies.
Abstract: Crude oil-derived hydrocarbons constitute the largest group of environmental pollutants worldwide. The number of reports concerning their toxicity and emphasizing the ultimate need to remove them from marine and soil environments confirms the unceasing interest of scientists in this field. Among the various techniques used for clean-up actions, bioremediation seems to be the most acceptable and economically justified. Analysis of recent reports regarding unsuccessful bioremediation attempts indicates that there is a need to highlight the fundamental aspects of hydrocarbon microbiology in a clear and concise manner. Therefore, in this review, we would like to elucidate some crucial, but often overlooked, factors. First, the formation of crude oil and abundance of naturally occurring hydrocarbons is presented and compared with bacterial ability to not only survive but also to utilize such compounds as an attractive energy source. Then, the significance of nutrient limitation on biomass growth is underlined on the example of a specially designed experiment and discussed in context of bioremediation efficiency. Next, the formation of aerobic and anaerobic conditions, as well as the role of surfactants for maintaining appropriate C:N:P ratio during initial stages of biodegradation is explained. Finally, a summary of recent scientific reports focused on the removal of hydrocarbon contaminants using bioaugmentation, biostimulation and introduction of surfactants, as well as biosurfactants, is presented. This review was designed to be a comprehensive source of knowledge regarding the unique aspects of hydrocarbon microbiology that may be useful for planning future biodegradation experiments. In addition, it is a starting point for wider debate regarding the limitations and possible improvements of currently employed bioremediation strategies.

Journal ArticleDOI
TL;DR: The natural and unique ability of fungi to invade substrates by using enzymes that have the capacity to detoxify pollutants and are able to act on nonspecific substrates is described, the fungal ability to produce hydrophobins for surface coating to attach hyphae to hydrophobic substrates, and hyphal ability to penetrate three dimensional substrates.

Journal ArticleDOI
Yao Yao1, Xiaoyu Cai, Weidong Fei1, Yiqing Ye1, Meng-Dan Zhao1, Caihong Zheng1 
TL;DR: Theoretical basis for the study of SCFAs as potential drugs to promote human health is provided, which provides a systematic theoretical basis for studying the potential role ofSCFAs in regulating energy homeostasis and metabolism.
Abstract: Short-chain fatty acids (SCFAs) are carboxylic acids with carbon atom numbers less than 6, which are important metabolites of gut microbiome. Existing research shows that SCFAs play a vital role in the health and disease of the host. First, SCFAs are the key energy source for colon and ileum cells, and affect the intestinal epithelial barrier and defense functions by regulating related gene expression. Second, SCFAs regulate the function of innate immune cells to participate in the immune system, such as macrophages, neutrophils and dendritic cells. Third, SCFAs can also regulate the differentiation of T cells and B cells and the antigen-specific adaptive immunity mediated by them. Besides, SCFAs are raw materials for sugar and lipid synthesis, which provides a theoretical basis for studying the potential role of SCFAs in regulating energy homeostasis and metabolism. There are also studies showing that SCFAs inhibit tumor cell proliferation and promote apoptosis. In this article, we summarized in detail the role of SCFAs in immunity, inflammation and metabolism, and briefly introduced the role of SCFAs in tumor cell survival. It provides a systematic theoretical basis for the study of SCFAs as potential drugs to promote human health.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the connection between renewable energy and institutional quality in 38 countries during the period 1990-2015 and concluded that the institutional quality positively affects renewable energy consumption in the long run.

Journal ArticleDOI
TL;DR: Current knowledge on how ketogenic interventions support brain metabolism is summarized and the therapeutic role of ketones in neurodegenerative disease is discussed, emphasizing clinical data.
Abstract: Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.

Journal ArticleDOI
TL;DR: In this article, a literature review on catalytic methane combustion is presented, including the catalyst types, reaction mechanisms and kinetic characteristics, effects of various influencing operational factors and different reactor types proposed and tested.
Abstract: Natural gas (with methane as its main component) provides an attractive energy source because of its large abundance and its high heat of combustion per mole of carbon dioxide generated. However, the emissions released from the conventional flame combustion (essentially NOx) have harmful impacts on the environment and the human health. Within the scope of rational and clean use of fossil energies, the catalytic combustion of natural gas appears as one of the most promising alternatives to flammable combustion. The presence of catalysts enables complete oxidation of methane at much lower temperatures (typically 500 °C), so that the formation of pollutants can be largely avoided. This work presents a literature review on the catalytic methane combustion. Various aspects are discussed including the catalyst types, the reaction mechanisms and kinetic characteristics, effects of various influencing operational factors and different reactor types proposed and tested. This paper may serve as an essential reference that contributes to the development of well-designed reactors, equipped with appropriate catalysts, and under well-handled operating conditions to realize the favorable (kinetic) performance, for their future applications and propagation in different industrial sectors.

Journal ArticleDOI
TL;DR: In this paper, the authors provided insights into the global and regional potential of wastewater as water, nutrient and energy sources while acknowledging the limitations of current resource recovery opportunities and promoting efforts to fast track high-efficiency returns.
Abstract: There is a proactive interest in recovering water, nutrients and energy from waste streams with the increase in municipal wastewater volumes and innovations in resource recovery. Based on the synthesis of wastewater data, this study provides insights into the global and regional “potential” of wastewater as water, nutrient and energy sources while acknowledging the limitations of current resource recovery opportunities and promoting efforts to fast‐track high‐efficiency returns. The study estimates suggest that, currently, 380 billion m3 (m3 = 1,000 L) of wastewater are produced annually across the world which is a volume five‐fold the volume of water passing through Niagara Falls annually. Wastewater production globally is expected to increase by 24% by 2030 and 51% by 2050 over the current level. Among major nutrients, 16.6 Tg (Tg = million metric ton) of nitrogen are embedded in wastewater produced worldwide annually; phosphorus stands at 3.0 Tg and potassium at 6.3 Tg. The full nutrient recovery from wastewater would offset 13.4% of the global demand for these nutrients in agriculture. Beyond nutrient recovery and economic gains, there are critical environmental benefits, such as minimizing eutrophication. At the energy front, the energy embedded in wastewater would be enough to provide electricity to 158 million households. These estimates and projections are based on the maximum theoretical amounts of water, nutrients and energy that exist in the reported municipal wastewater produced worldwide annually. Supporting resource recovery from wastewater will need a step‐wise approach to address a range of constraints to deliver a high rate of return in direct support of Sustainable Development Goals (SDG) 6, 7 and 12, but also other Goals, including adaptation to climate change and efforts in advancing “net‐zero” energy processes towards a green economy.

Journal ArticleDOI
TL;DR: This study uses data on 93 million individual homes to perform the most comprehensive study of greenhouse gases from residential energy use in the United States and provides nationwide rankings of carbon intensity of homes in states and ZIP codes and offers correlations between affluence, floor space, and emissions.
Abstract: Residential energy use accounts for roughly 20% of greenhouse gas (GHG) emissions in the United States. Using data on 93 million individual households, we estimate these GHGs across the contiguous United States and clarify the respective influence of climate, affluence, energy infrastructure, urban form, and building attributes (age, housing type, heating fuel) in driving these emissions. A ranking by state reveals that GHGs (per unit floor space) are lowest in Western US states and highest in Central states. Wealthier Americans have per capita footprints ∼25% higher than those of lower-income residents, primarily due to larger homes. In especially affluent suburbs, these emissions can be 15 times higher than nearby neighborhoods. If the electrical grid is decarbonized, then the residential housing sector can meet the 28% emission reduction target for 2025 under the Paris Agreement. However, grid decarbonization will be insufficient to meet the 80% emissions reduction target for 2050 due to a growing housing stock and continued use of fossil fuels (natural gas, propane, and fuel oil) in homes. Meeting this target will also require deep energy retrofits and transitioning to distributed low-carbon energy sources, as well as reducing per capita floor space and zoning denser settlement patterns.