scispace - formally typeset
Search or ask a question

Showing papers on "Inhibitory postsynaptic potential published in 2000"


Journal ArticleDOI
17 Nov 2000-Science
TL;DR: It is found that overexpression of PSD-95 in hippocampal neurons can drive maturation of glutamatergic synapses and this results demonstrate that PSd-95 can orchestrate synaptic development and are suggestive of roles for PSD -95 in synapse stabilization and plasticity.
Abstract: PSD-95 is a neuronal PDZ protein that associates with receptors and cytoskeletal elements at synapses, but whose function is uncertain. We found that overexpression of PSD-95 in hippocampal neurons can drive maturation of glutamatergic synapses. PSD-95 expression enhanced postsynaptic clustering and activity of glutamate receptors. Postsynaptic expression of PSD-95 also enhanced maturation of the presynaptic terminal. These effects required synaptic clustering of PSD-95 but did not rely on its guanylate kinase domain. PSD-95 expression also increased the number and size of dendritic spines. These results demonstrate that PSD-95 can orchestrate synaptic development and are suggestive of roles for PSD-95 in synapse stabilization and plasticity.

1,206 citations


Journal ArticleDOI
TL;DR: This review will provide the reader with a brief outline of the basic properties of inhibition-based oscillations in the CNS by combining research from laboratory models, large-scale neuronal network simulations, and mathematical analysis.

883 citations


Journal ArticleDOI
27 Oct 2000-Science
TL;DR: By changing synaptic strength in response to neural activity, the postsynaptic density contributes to information processing and the formation of memories.
Abstract: Dendrites of individual neurons in the vertebrate central nervous system are contacted by thousands of synaptic terminals relaying information about the environment. The postsynaptic membrane at each synaptic terminal is the first place where information is processed as it converges on the dendrite. At the postsynaptic membrane of excitatory synapses, neurotransmitter receptors are attached to large protein "signaling machines" that delicately regulate the strength of synaptic transmission. These machines are visible in the electron microscope and are called the postsynaptic density. By changing synaptic strength in response to neural activity, the postsynaptic density contributes to information processing and the formation of memories.

750 citations


Journal ArticleDOI
09 Mar 2000-Nature
TL;DR: It is shown that the potential for plasticity is retained throughout life until an inhibitory threshold is attained, and a threshold level of inhibition within the visual cortex may trigger, once in life, an experience-dependent critical period for circuit consolidation, which may otherwise lie dormant.
Abstract: Neuronal circuits across several systems display remarkable plasticity to sensory input during postnatal development. Experience-dependent refinements are often restricted to well-defined critical periods in early life, but how these are established remains mostly unknown. A representative example is the loss of responsiveness in neocortex to an eye deprived of vision. Here we show that the potential for plasticity is retained throughout life until an inhibitory threshold is attained. In mice of all ages lacking an isoform of GABA (gamma-aminobutyric acid) synthetic enzyme (GAD65), as well as in immature wild-type animals before the onset of their natural critical period, benzodiazepines selectively reduced a prolonged discharge phenotype to unmask plasticity. Enhancing GABA-mediated transmission early in life rendered mutant animals insensitive to monocular deprivation as adults, similar to normal wild-type mice. Short-term presynaptic dynamics reflected a synaptic reorganization in GAD65 knockout mice after chronic diazepam treatment. A threshold level of inhibition within the visual cortex may thus trigger, once in life, an experience-dependent critical period for circuit consolidation, which may otherwise lie dormant.

661 citations


Journal ArticleDOI
TL;DR: It is concluded that activation of presynaptic CB1 receptors decreases Ca2+‐dependent GABA release, and thereby reduces the power of hippocampal network oscillations.
Abstract: Using a new antibody developed against the C-terminus of the cannabinoid receptor (CB1), the immunostaining in the hippocampus revealed additional axon terminals relative to the pattern reported previously with an N-terminus antibody. Due to a greater sensitivity of this antibody, a large proportion of boutons in the dendritic layers displaying symmetrical (GABAergic) synapses were also strongly immunoreactive for CB1 receptors, as were axon terminals of perisomatic inhibitory cells containing cholecystokinin. Asymmetrical (glutamatergic) synapses, however, were always negative for CB1. To investigate the effect of presynaptic CB1 receptor activation on hippocampal inhibition, we recorded inhibitory postsynaptic currents (IPSCs) from principal cells. Bath application of CB1 receptor agonists (WIN55,212-2 and CP55,940) suppressed IPSCs evoked by local electrical stimulation, which could be prevented or reversed by the CB1 receptor antagonist SR141716A. Action potential-driven IPSCs, evoked by pharmacological stimulation of a subset of interneurons, were also decreased by CB1 receptor activation. We also examined the effects of CB1 receptor agonists on Ca2+-independent miniature IPSCs (mIPSC). Both agonists were without significant effect on the frequency or amplitude of mIPSCs. Synchronous gamma oscillations induced by kainic acid in the CA3 region of hippocampal slices were reversibly reduced in amplitude by the CB1 receptor agonist CP 55,940, which is consistent with an action on IPSCs. We used CB1-/- knock-out mice to confirm the specificity of the antibody and of the agonist (WIN55,212-2) action. We conclude that activation of presynaptic CB1 receptors decreases Ca2+-dependent GABA release, and thereby reduces the power of hippocampal network oscillations.

537 citations


Journal ArticleDOI
TL;DR: It is concluded that an electrically coupled network of LTS interneurons can mediate synchronized inhibition when activated by modulatory neurotransmitters.
Abstract: The neocortex has at least two different networks of electrically coupled inhibitory interneurons: fast-spiking (FS) and low-threshold-spiking (LTS) cells. Agonists of metabotropic glutamate or acetylcholine receptors induced synchronized spiking and membrane fluctuations, with irregular or rhythmic patterns, in networks of LTS cells. LTS activity was closely correlated with inhibitory postsynaptic potentials in neighboring FS interneurons and excitatory neurons. Synchronized LTS activity required electrical synapses, but not fast chemical synapses. Tetanic stimulation of local circuitry induced effects similar to those of metabotropic agonists. We conclude that an electrically coupled network of LTS interneurons can mediate synchronized inhibition when activated by modulatory neurotransmitters.

505 citations


Journal ArticleDOI
TL;DR: A simple random walk model in which the membrane potential of a target neuron fluctuates stochastically, driven by excitatory and inhibitory spikes arriving at random times, shows that, in the balanced regime, weak correlations caused by signals shared among inputs may have a multiplicative effect on the input-output rate curve of a postsynaptic neuron.
Abstract: Cortical neurons are typically driven by thousands of synaptic inputs. The arrival of a spike from one input may or may not be correlated with the arrival of other spikes from different inputs. How does this interdependence alter the probability that the postsynaptic neuron will fire? We constructed a simple random walk model in which the membrane potential of a target neuron fluctuates stochastically, driven by excitatory and inhibitory spikes arriving at random times. An analytic expression was derived for the mean output firing rate as a function of the firing rates and pairwise correlations of the inputs. This stochastic model made three quantitative predictions. (1) Correlations between pairs of excitatory or inhibitory inputs increase the fluctuations in synaptic drive, whereas correlations between excitatory‐inhibitory pairs decrease them. (2) When excitation and inhibition are fully balanced (the mean net synaptic drive is zero), firing is caused by the fluctuations only. (3) In the balanced case, firing is irregular. These theoretical predictions were in excellent agreement with simulations of an integrate-and-fire neuron that included multiple conductances and received hundreds of synaptic inputs. The results show that, in the balanced regime, weak correlations caused by signals shared among inputs may have a multiplicative effect on the input-output rate curve of a postsynaptic neuron, i.e. they may regulate its gain; in the unbalanced regime, correlations may increase firing probability mainly around threshold, when output rate is low; and in all cases correlations are expected to increase the variability of the output spike train.

486 citations


Journal ArticleDOI
TL;DR: This review focuses on the molecular organization of excitatory synapses and the processes involved in the dynamic regulation of glutamate receptors.
Abstract: Dynamic regulation of synaptic efficacy is one of the mechanisms thought to underlie learning and memory. Many of the observed changes in efficacy, such as long-term potentiation and long-term depression, result from the functional alteration of excitatory neurotransmission mediated by postsynaptic glutamate receptors. These changes may result from the modulation of the receptors themselves and from regulation of protein networks associated with glutamate receptors. Understanding the interactions in this synaptic complex will yield invaluable insight into the molecular basis of synaptic function. This review focuses on the molecular organization of excitatory synapses and the processes involved in the dynamic regulation of glutamate receptors.

471 citations


Journal ArticleDOI
TL;DR: Recordings of whole-cell voltage-clamp recordings suggest that presynaptic CB1 receptors reduce GABAA- but not GABAB-mediated synaptic inhibition of CA1 pyramidal neurons by inhibiting VDCCs located on inhibitory nerve terminals.
Abstract: The localization of cannabinoid (CB) receptors to GABAergic interneurons in the hippocampus indicates that CBs may modulate GABAergic function and thereby mediate some of the disruptive effects of marijuana on spatial memory and sensory processing. To investigate the possible mechanisms through which CB receptors may modulate GABAergic neurotransmission in the hippocampus, whole-cell voltage-clamp recordings were performed on CA1 pyramidal neurons in rat brain slices. Stimulus-evoked GABA A receptor-mediated IPSCs were reduced in a concentration-dependent manner by the CB receptor agonist WIN 55,212–2 (EC 50 of 138 nm). This effect was blocked by the CB1 receptor antagonist SR141716A (1 μm) but not by the opioid antagonist naloxone. In contrast, evoked GABA B -mediated IPSCs were insensitive to the CB agonist. WIN 55,212–2 also reduced the frequency of spontaneous, action potential-dependent IPSCs (sIPSCs), without altering action potential-independent miniature IPSCs (mIPSCs), measured while sodium channels were blocked by tetrodotoxin (TTX). Blockade of voltage-dependent calcium channels (VDCCs) by cadmium also eliminated the effect of WIN 55,212–2 on sIPSCs. Depolarization of inhibitory terminals with elevated extracellular potassium caused a large increase in the frequency of mIPSCs that was inhibited by both cadmium and WIN 55,212–2. The presynaptic effect of WIN 55,212–2 was also investigated using the potassium channel blockers barium and 4-aminopyridine. Neither of these agents significantly altered the effect of WIN 55,212–2 on evoked IPSCs. Together, these data suggest that presynaptic CB1 receptors reduce GABA A - but not GABA B -mediated synaptic inhibition of CA1 pyramidal neurons by inhibiting VDCCs located on inhibitory nerve terminals.

411 citations


Journal ArticleDOI
TL;DR: The data suggest that large mIPSCs are multivesicular events regulated by Ca2+ release from ryanodine-sensitive presynapticCa2+ stores.
Abstract: The cellular mechanisms responsible for large miniature currents in some brain synapses remain undefined. In Purkinje cells, we found that large-amplitude miniature inhibitory postsynaptic currents (mIPSCs) were inhibited by ryanodine or by long-term removal of extracellular Ca2+. Two-photon Ca2+ imaging revealed random, ryanodine-sensitive intracellular Ca2+ transients, spatially constrained at putative presynaptic terminals. At high concentration, ryanodine decreased action-potential-evoked rises in intracellular Ca2+. Immuno-localization showed ryanodine receptors in these terminals. Our data suggest that large mIPSCs are multivesicular events regulated by Ca2+ release from ryanodine-sensitive presynaptic Ca2+ stores.

393 citations


Journal ArticleDOI
TL;DR: The parameters of IPSCs evoked by BiCs and O‐BiCs showed the largest cell to cell variation, and a single interneurone could evoke both small and slow as well as large and relatively fast IPSCs, a significant correlation of rise and decay times for the overall population of unitary IPSCs suggests that electrotonic filtering of distal responses is a major factor for the location and cell type specific differences of unitARY IPSCs.
Abstract: 1. Inhibitory postsynaptic currents (IPSCs) evoked in CA1 pyramidal cells (n = 46) by identified interneurones (n = 43) located in str. oriens were recorded in order to compare their functional properties and to determine the effect of synapse location on the apparent IPSC kinetics as recorded using somatic voltage clamp at -70 mV and nearly symmetrical [Cl-]. 2. Five types of visualised presynaptic interneurone, oriens-lacunosum moleculare (O-LMC), basket (BC), axo-axonic (AAC), bistratified (BiC) and oriens-bistratified (O-BiC) cells, were distinguished by immunocytochemistry and/or synapse location using light and electron microscopy. 3. Somatostatin immunoreactive O-LMCs, innervating the most distal dendritic shafts and spines, evoked the smallest amplitude (26 +/- 10 pA, s.e.m., n = 8) and slowest IPSCs (10-90 % rise time, 6.2 +/- 0.6 ms; decay, 20.8 +/- 1.7 ms, n = 8), with no paired-pulse modulation of the second IPSC (93 +/- 4 %) at 100 ms interspike interval. In contrast, parvalbumin-positive AACs evoked larger amplitude (308 +/- 103 pA, n = 7) and kinetically faster (rise time, 0.8 +/- 0.1 ms; decay 11.2 +/- 0.9 ms, n = 7) IPSCs showing paired-pulse depression (to 68 +/- 5 %, n = 6). Parvalbumin- or CCK-positive BCs (n = 9) terminating on soma/dendrites, BiCs (n = 4) and O-BiCs (n = 7) innervating dendrites evoked IPSCs with intermediate kinetic parameters. The properties of IPSCs and sensitivity to bicuculline indicated that they were mediated by GABAA receptors. 4. In three cases, kinetically complex, multiphasic IPSCs, evoked by an action potential in the recorded basket cells, suggested that coupled interneurones, possibly through electrotonic junctions, converged on the same postsynaptic neurone. 5. The population of O-BiCs (4 of 4 somatostatin positive) characterised in this study had horizontal dendrites restricted to str. oriens/alveus and innervated stratum radiatum and oriens. Other BiCs had radial dendrites as described earlier. The parameters of IPSCs evoked by BiCs and O-BiCs showed the largest cell to cell variation, and a single interneurone could evoke both small and slow as well as large and relatively fast IPSCs. 6. The kinetic properties of the somatically recorded postsynaptic current are correlated with the innervated cell surface domain. A significant correlation of rise and decay times for the overall population of unitary IPSCs suggests that electrotonic filtering of distal responses is a major factor for the location and cell type specific differences of unitary IPSCs, but molecular heterogeneity of postsynaptic GABAA receptors may also contribute to the observed kinetic differences. Furthermore, domain specific differences in the short-term plasticity of the postsynaptic response indicate a differentiation of interneurones in activity-dependent responses.

Journal ArticleDOI
14 Jan 2000-Science
TL;DR: Simultaneous recordings from dendrites and somata suggested that action potential initiation occurs preferentially in the axon with long threshold stimuli, but can be shifted to somatodendritic sites when brief stimuli are applied.
Abstract: Fast and reliable activation of inhibitory interneurons is critical for the stability of cortical neuronal networks. Active conductances in dendrites may facilitate interneuron activation, but direct experimental evidence was unavailable. Patch-clamp recordings from dendrites of hippocampal oriens-alveus interneurons revealed high densities of voltage-gated sodium and potassium ion channels. Simultaneous recordings from dendrites and somata suggested that action potential initiation occurs preferentially in the axon with long threshold stimuli, but can be shifted to somatodendritic sites when brief stimuli are applied. After initiation, action potentials propagate over the somatodendritic domain with constant amplitude, high velocity, and reliability, even during high-frequency trains.

Journal ArticleDOI
TL;DR: It is suggested that GABAA receptors cycle between the synaptic membrane and intracellular sites, and their association with AP2 followed by recruitment into clathrin-coated pits represents an important mechanism in the postsynaptic modulation of inhibitory synaptic transmission.
Abstract: Type A GABA receptors (GABA(A)) mediate the majority of fast synaptic inhibition in the brain and are believed to be predominantly composed of alpha, beta, and gamma subunits. Although changes in cell surface GABA(A) receptor number have been postulated to be of importance in modulating inhibitory synaptic transmission, little is currently known on the mechanism used by neurons to modify surface receptor levels at inhibitory synapses. To address this issue, we have studied the cell surface expression and maintenance of GABA(A) receptors. Here we show that constitutive internalization of GABA(A) receptors in hippocampal neurons and recombinant receptors expressed in A293 cells is mediated by clathrin-dependent endocytosis. Furthermore, we identify an interaction between the GABA(A) receptor beta and gamma subunits with the adaptin complex AP2, which is critical for the recruitment of integral membrane proteins into clathrin-coated pits. GABA(A) receptors also colocalize with AP2 in cultured hippocampal neurons. Finally, blocking clathrin-dependant endocytosis with a peptide that disrupts the association between amphiphysin and dynamin causes a large sustained increase in the amplitude of miniature IPSCs in cultured hippocampal neurons. These results suggest that GABA(A) receptors cycle between the synaptic membrane and intracellular sites, and their association with AP2 followed by recruitment into clathrin-coated pits represents an important mechanism in the postsynaptic modulation of inhibitory synaptic transmission.

Journal ArticleDOI
TL;DR: Differential laminar sources of excitatory inputs contribute to the functional diversity of cortical inhibitory interneurons.
Abstract: The functional role of an individual neuron within a cortical circuit is largely determined by that neuron's synaptic input. We examined the laminar sources of local input to subtypes of cortical neurons in layer 2/3 of rat visual cortex using laser scanning photostimulation. We identified three distinct laminar patterns of excitatory input that correspond to physiological and morphological subtypes of neurons. Fast-spiking inhibitory basket cells and excitatory pyramidal neurons received strong excitatory input from middle cortical layers. In contrast, adapting inhibitory interneurons received their strongest excitatory input either from deep layers or laterally from within layer 2/3. Thus, differential laminar sources of excitatory inputs contribute to the functional diversity of cortical inhibitory interneurons.

Journal ArticleDOI
01 Apr 2000-Neuron
TL;DR: The tetanus that elicits NMDA-dependent LTP mediates a coordinately regulated double function that produces LTP of the EPSP and, concomitantly, LTD of the IPSP that leads to enhancement of E-S coupling.

Journal ArticleDOI
TL;DR: The results indicate that projections from the VTA to the prefrontal cortex may be involved in controlling membrane potential states that define assemblies of activable pyramidal neurons in this region.
Abstract: The electrophysiological nature of dopamine actions has been controversial for years, with data supporting both inhibitory and excitatory actions. In this study, we tested whether stimulation of the ventral tegmental area (VTA), the source of the dopamine innervation of the prefrontal cortex, would exert different responses depending on the membrane potential states that pyramidal neurons exhibit when recorded in vivo, and whether VTA stimulation would have a role in controlling transitions between these states. Prefrontal cortical neurons have a very negative resting membrane potential (down state) interrupted by plateau depolarizations (up state). Although the up state had been shown to be dependent on hippocampal afferents in nucleus accumbens neurons, our results indicate that neither hippocampal nor thalamic inputs are sufficient to drive up events in prefrontal cortical neurons. Electrical VTA stimulation resulted in a variety of actions, in many cases depending on the neuron membrane potential state. Trains of stimuli resembling burst firing evoked a long-lasting transition to the up state, an effect blocked by a D(1) antagonist and mimicked by chemical VTA stimulation. These results indicate that projections from the VTA to the prefrontal cortex may be involved in controlling membrane potential states that define assemblies of activable pyramidal neurons in this region.

Journal ArticleDOI
TL;DR: Induction of LTP or LTD altered the short-term plasticity of transmission onto both pyramidal cells and interneuron CP AMPA synapses by a mechanism consistent with changes in release probability, revealing differential mechanisms of transmission at three classes of mossy fiber synapse made onto distinct targets.
Abstract: The axons of the dentate gyrus granule cells, the so-called mossy fibers, innervate their inhibitory interneuron and pyramidal neuron targets via both anatomically and functionally specialized synapses. Mossy fiber synapses onto inhibitory interneurons were comprised of either calcium-permeable (CP) or calcium-impermeable (CI) AMPA receptors, whereas only calcium-impermeable AMPA receptors existed at CA3 principal neuron synapses. In response to brief trains of high-frequency stimuli (20 Hz), pyramidal neuron synapses invariably demonstrated short-term facilitation, whereas interneuron EPSCs demonstrated either short-term facilitation or depression. Facilitation at all CI AMPA synapses was voltage independent, whereas EPSCs at CP AMPA synapses showed greater facilitation at -20 than at -80 mV, consistent with a role for the postsynaptic unblock of polyamines. At pyramidal cell synapses, mossy fiber EPSCs possessed marked frequency-dependent facilitation (commencing at stimulation frequencies >0.1 Hz), whereas EPSCs at either type of interneuron synapse showed only moderate frequency-dependent facilitation or underwent depression. Presynaptic metabotropic glutamate receptors (mGluRs) decreased transmission at all three synapse types in a frequency-dependent manner. However, after block of presynaptic mGluRs, transmission at interneuron synapses still did not match the dynamic range of EPSCs at pyramidal neuron synapses. High-frequency stimulation of mossy fibers induced long-term potentiation (LTP), long-term depression (LTD), or no change at pyramidal neuron synapses, interneuron CP AMPA synapses, and CI AMPA synapses, respectively. Induction of LTP or LTD altered the short-term plasticity of transmission onto both pyramidal cells and interneuron CP AMPA synapses by a mechanism consistent with changes in release probability. These data reveal differential mechanisms of transmission at three classes of mossy fiber synapse made onto distinct targets.

Journal ArticleDOI
TL;DR: The discovery of functional nicotinic receptors (nAChRs) in interneurons of the human cerebral cortex is reported and these mechanisms can account for the involvement of nA ChRs in cognitive functions and in certain neuropathological conditions.
Abstract: Cholinergic control of the activity of human cerebral cortical circuits has long been thought to be accounted for by the interaction of acetylcholine (ACh) with muscarinic receptors. Here we report the discovery of functional nicotinic receptors (nAChRs) in interneurons of the human cerebral cortex and discuss the physiological and clinical implications of these findings. The whole-cell mode of the patch-clamp technique was used to record responses triggered by U-tube application of the nonselective agonist ACh and of the α7-nAChR-selective agonist choline to interneurons visualized by means of infrared-assisted videomicroscopy in slices of the human cerebral cortex. Choline induced rapidly desensitizing whole-cell currents that, being sensitive to blockade by methyllycaconitine (MLA; 50 nm), were most likely subserved by an α7-like nAChR. In contrast, ACh evoked slowly decaying whole-cell currents that, being sensitive to blockade by dihydro-β-erythroidine (DHβE; 10 μm), were most likely subserved by an α4β2-like nAChR. Application of ACh (but not choline) to the slices also triggered GABAergic postsynaptic currents (PSCs). Evidence is provided that ACh-evoked PSCs are the result of activation of α4β2-like nAChRs present in preterminal axon segments and/or in presynaptic terminals of interneurons. Thus, nAChRs can relay inhibitory and/or disinhibitory signals to pyramidal neurons and thereby modulate the activity of neuronal circuits in the human cerebral cortex. These mechanisms, which appear to be retained across species, can account for the involvement of nAChRs in cognitive functions and in certain neuropathological conditions.

Journal ArticleDOI
TL;DR: This work identified electrically coupled pairs of neurons between postnatal days 12 and 18 in rat visual cortex, somatosensory cortex, and hippocampus and revealed a differential expression pattern of connexins in these identified neurons.
Abstract: Electrical coupling by gap junctions is an important form of cell-to-cell communication in early brain development. Whereas glial cells remain electrically coupled at postnatal stages, adult vertebrate neurons were thought to communicate mainly via chemical synapses. There is now accumulating evidence that in certain neuronal cell populations the capacity for electrical signaling by gap junction channels is still present in the adult. Here we identified electrically coupled pairs of neurons between postnatal days 12 and 18 in rat visual cortex, somatosensory cortex, and hippocampus. Notably, coupling was found both between pairs of inhibitory neurons and between inhibitory and excitatory neurons. Molecular analysis by single-cell reverse transcription–PCR revealed a differential expression pattern of connexins in these identified neurons.

Journal ArticleDOI
TL;DR: A model of inhibitory neurotransmitter receptor clustering, is proposed, in which this process is initiated by receptor-driven activation of phosphatidylinositol 3-kinase, which might integrate activity-dependent and trophic-factor-mediated signals at developing postsynaptic sites.

Journal ArticleDOI
01 Nov 2000-Neuron
TL;DR: Differences in precision of EPSP-spike coupling in inhibitory and pyramidal cells will enhance inhibitory control of the spread of excitation in the hippocampus.

Journal ArticleDOI
TL;DR: The authors’ results show that isoflurane and xenon have very different effects on GABAergic and glutamatergic synaptic transmission, and this may account for their differing pharmacologic profiles.
Abstract: Background The mechanisms by which the inhalational general anesthetics isoflurane and xenon exert their effects are unknown. Moreover, there have been surprisingly few quantitative studies of the effects of these agents on central synapses, with virtually no information available regarding the actions of xenon. Methods The actions of isoflurane and xenon on gamma-aminobutyric acid-mediated (GABAergic) and glutamatergic synapses were investigated using voltage-clamp techniques on autaptic cultures of rat hippocampal neurons, a preparation that avoids the confounding effects of complex neuronal networks. Results Isoflurane exerts its greatest effects on GABAergic synapses, causing a marked increase in total charge transfer (by approximately 70% at minimum alveolar concentration) through the inhibitory postsynaptic current. This effect is entirely mediated by an increase in the slow component of the inhibitory postsynaptic current. At glutamatergic synapses, isoflurane has smaller effects, but it nonetheless significantly reduces the total charge transfer (by approximately 30% at minimum alveolar concentration) through the excitatory postsynaptic current, with the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor-mediated components being roughly equally sensitive. Xenon has no measurable effect on GABAergic inhibitory postsynaptic currents or on currents evoked by exogenous application of GABA, but it substantially inhibits total charge transfer (by approximately 60% at minimum alveolar concentration) through the excitatory postsynaptic current. Xenon selectively inhibits the NMDA receptor-mediated component of the current but has little effect on the AMPA/kainate receptor-mediated component. Conclusions For both isoflurane and xenon, the most important targets appear to be postsynaptic. The authors' results show that isoflurane and xenon have very different effects on GABAergic and glutamatergic synaptic transmission, and this may account for their differing pharmacologic profiles.

Journal ArticleDOI
TL;DR: A unique expression pattern and the presynaptic modulation of GABA release suggests a conserved role for CB1 receptors in controlling inhibitory networks of the hippocampus that are responsible for the generation and maintenance of fast and slow oscillatory patterns.

Journal ArticleDOI
TL;DR: Investigation of organotypic slice cultures in postnatal day 7 rats found that neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation.
Abstract: Hippocampal interneurons inhibit pyramidal neurons through the release of the neurotransmitter GABA. Given the importance of this inhibition for the proper functioning of the hippocampus, the development of inhibitory synapses must be tightly regulated. In this study, the possibility that neuronal activity and neurotrophins regulate the density of GABAergic inhibitory synapses was investigated in organotypic slice cultures taken from postnatal day 7 rats. In hippocampal slices cultured for 13 d in the presence of the GABA(A) receptor antagonist bicuculline, the density of glutamic acid decarboxylase (GAD) 65-immunoreactive terminals was increased in the CA1 area when compared with control slices. Treatment with the glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione decreased the density of GAD65-immunoreactive terminals in the stratum oriens of CA1. These treatments had parallel effects on the density of GABA-immunoreactive processes. Electron microscopic analysis after postembedding immunogold labeling with antibodies against GABA indicated that bicuculline treatment increased the density of inhibitory but not excitatory synapses. Application of exogenous BDNF partly mimicked the stimulatory effect of bicuculline on GAD65-immunoreactive terminals. Finally, antibodies against BDNF, but not antibodies against nerve growth factor, decrease the density of GAD65-immunoreactive terminals in bicuculline-treated slices. Thus, neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation. This regulation of the density of inhibitory synapses could represent a feedback mechanism aimed at maintaining an appropriate level of activity in the developing hippocampal networks.

Journal ArticleDOI
01 Jun 2000-Neuron
TL;DR: It is shown here that unitary inhibitory postsynaptic currents at this synapse are mediated by SK2 channels and occur rapidly, with rise and decay time constants of approximately 6 ms and approximately 30 ms, respectively.

Journal ArticleDOI
30 Mar 2000-Nature
TL;DR: It is shown that ‘spillover’ of glutamate, which is released from excitatory mossy fibres, inhibits GABA release from Golgi cell terminals by activating presynaptic mGluRs under physiological conditions, and this heterosynaptic mechanism is likely to boost the efficacy of activeexcitatory fibres by locally reducing the level of inhibition.
Abstract: Metabotropic glutamate receptors (mGluRs) found on synaptic terminals throughout the brain are thought to be important in modulating neurotransmission. Activation of mGluRs by synaptically released glutamate depresses glutamate release from excitatory terminals but the physiological role of mGluRs on inhibitory terminals is unclear. We have investigated activation of mGluRs on inhibitory terminals within the cerebellar glomerulus, a structure in which GABA (gamma-aminobutyric acid)-releasing inhibitory terminals and glutamatergic excitatory terminals are in close apposition and make axo-dendritic synapses onto granule cells. Here we show that 'spillover' of glutamate, which is released from excitatory mossy fibres, inhibits GABA release from Golgi cell terminals by activating presynaptic mGluRs under physiological conditions. The magnitude of the depression of the inhibitory postsynaptic current is dependent on the frequency of mossy fibre stimulation, reaching 50% at 100 Hz. Furthermore, the duration of inhibitory postsynaptic current depression mirrors the time course of mossy fibre activity. Our results establish that mGluRs on inhibitory interneuron axons sense the activity of neighbouring excitatory synapses. This heterosynaptic mechanism is likely to boost the efficacy of active excitatory fibres by locally reducing the level of inhibition.

Journal ArticleDOI
TL;DR: It is shown that modulated cell signaling in the Drosophila dopamine and serotonin neurons plays an essential role in cocaine sensitization and that repeated drug stimulation of a nerve cord preparation that is postsynaptic to the brain amine cells failed to induce sensitization, further showing the importance of presynaptic modulation in sensitization.

Journal ArticleDOI
TL;DR: An unsuspected heterogeneity in the modes of attachment of postsynaptic proteins to the cytoskeleton is revealed and support the idea that PSD-95 and gephyrin may be core scaffolding components independent of the actin or tubulin cytos skeleton.
Abstract: The mechanisms responsible for anchoring molecular components of postsynaptic specializations in the mammalian brain are not well understood but are presumed to involve associations with cytoskeletal elements. Here we build on previous studies of neurotransmitter receptors (Allison et al., 1998) to analyze the modes of attachment of scaffolding and signal transducing proteins of both glutamate and GABA postsynaptic sites to either the microtubule or microfilament cytoskeleton. Hippocampal pyramidal neurons in culture were treated with latrunculin A to depolymerize actin, with vincristine to depolymerize microtubules, or with Triton X-100 to extract soluble proteins. The synaptic clustering of PSD-95, a putative NMDA receptor anchoring protein and a core component of the postsynaptic density (PSD), was unaffected by actin depolymerization, microtubule depolymerization, or detergent extraction. The same was largely true for GKAP, a PSD-95-interacting protein. In contrast, the synaptic clustering of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)alpha, another core component of the PSD, was completely dependent on an intact actin cytoskeleton and was partially disrupted by detergent. Drebrin and alpha-actinin-2, actin-binding proteins concentrated in spines, were also dependent on F-actin for synaptic localization but were unaffected by detergent extraction. Surprisingly, the subcellular distributions of the inhibitory synaptic proteins GABA(A)R and gephyrin, which has a tubulin-binding motif, were unaffected by depolymerization of microtubules or actin or by detergent extraction. These studies reveal an unsuspected heterogeneity in the modes of attachment of postsynaptic proteins to the cytoskeleton and support the idea that PSD-95 and gephyrin may be core scaffolding components independent of the actin or tubulin cytoskeleton.

Journal ArticleDOI
01 Jun 2000-Neuron
TL;DR: Asynchronous release at high frequencies may help generate a smooth inhibitory "tone" by minimizing the consequences of random timing of presynaptic action potentials.

Journal Article
TL;DR: It is suggested that cannabinoids act via CB(1) receptors to inhibit GABAergic and glutamatergic synaptic transmission in rat PAG, although the efficacy of endogenous cannabinoids is likely to be limited by uptake and breakdown.
Abstract: The midbrain periaqueductal gray (PAG) is a major site of cannabinoid-mediated analgesia in the central nervous system. In the present study, we examined the actions of cannabinoids on rat PAG neurons in vitro. In brain slices, superfusion of the cannabinoid receptor agonist WIN55,212-2 inhibited electrically evoked inhibitory and excitatory postsynaptic currents in all PAG neurons. The endogenous cannabinoid anandamide inhibited evoked inhibitory postsynaptic currents in the presence of the anandamide transport inhibitor AM404, but not in its absence. The stable anandamide analog R1-methanandamide also inhibited evoked inhibitory postsynaptic currents. WIN55,212-2 reduced the rate of spontaneous miniature inhibitory postsynaptic currents in normal and Ca(2+)-free solutions, but had no effect on their amplitude distributions or kinetics. The WIN55,212-2-induced decrease in miniature inhibitory postsynaptic current rate was concentration dependent (EC(50) = 520 nM). The effects of cannabinoids were reversed by the CB(1) receptor antagonist SR141716. WIN55,212-2 produced no change in membrane current or conductance in PAG neurons in brain slices and had no effect on Ca(2+)-channel currents in acutely isolated PAG neurons. These findings suggest that cannabinoids act via CB(1) receptors to inhibit GABAergic and glutamatergic synaptic transmission in rat PAG, although the efficacy of endogenous cannabinoids is likely to be limited by uptake and breakdown. Like mu-opioids, cannabinoids act to reduce the probability of transmitter release from presynaptic terminals via a Ca(2+)-independent mechanism. In contrast to mu-opioids, cannabinoids have no direct postsynaptic actions on PAG neurons. Thus, cannabinoids and mu-opioids are likely to produce analgesia within PAG in part by different mechanisms.