scispace - formally typeset
Search or ask a question

Showing papers on "Integrated stress response published in 2015"


Journal ArticleDOI
26 Feb 2015-eLife
TL;DR: By genome-wide in vivo ribosome profiling, ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2α and induced no major changes in translation or mRNA levels in unstressed cells.
Abstract: Previously, we identified ISRIB as a potent inhibitor of the integrated stress response (ISR) and showed that ISRIB makes cells resistant to the effects of eIF2α phosphorylation and enhances long-term memory in rodents (Sidrauski et al., 2013). Here, we show by genome-wide in vivo ribosome profiling that translation of a restricted subset of mRNAs is induced upon ISR activation. ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2α and induced no major changes in translation or mRNA levels in unstressed cells. eIF2α phosphorylation-induced stress granule (SG) formation was blocked by ISRIB. Strikingly, ISRIB addition to stressed cells with pre-formed SGs induced their rapid disassembly, liberating mRNAs into the actively translating pool. Restoration of mRNA translation and modulation of SG dynamics may be an effective treatment of neurodegenerative diseases characterized by eIF2α phosphorylation, SG formation, and cognitive loss.

432 citations


Journal ArticleDOI
15 Apr 2015-eLife
TL;DR: By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.
Abstract: The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.07314.001

223 citations


Journal ArticleDOI
TL;DR: HO-1 is established as a mediator of ATF4-dependent anoikis resistance and tumor metastasis and suggest ATF4 and HO-1 as potential targets for therapeutic intervention in solid tumors.
Abstract: The integrated stress response (ISR) is a critical mediator of cancer cell survival, and targeting the ISR inhibits tumor progression. Here, we have shown that activating transcription factor 4 (ATF4), a master transcriptional effector of the ISR, protects transformed cells against anoikis - a specialized form of apoptosis - following matrix detachment and also contributes to tumor metastatic properties. Upon loss of attachment, ATF4 activated a coordinated program of cytoprotective autophagy and antioxidant responses, including induced expression of the major antioxidant enzyme heme oxygenase 1 (HO-1). HO-1 upregulation was the result of simultaneous activation of ATF4 and the transcription factor NRF2, which converged on the HO1 promoter. Increased levels of HO-1 ameliorated oxidative stress and cell death. ATF4-deficient human fibrosarcoma cells were unable to colonize the lungs in a murine model, and reconstitution of ATF4 or HO-1 expression in ATF4-deficient cells blocked anoikis and rescued tumor lung colonization. HO-1 expression was higher in human primary and metastatic tumors compared with noncancerous tissue. Moreover, HO-1 expression correlated with reduced overall survival of patients with lung adenocarcinoma and glioblastoma. These results establish HO-1 as a mediator of ATF4-dependent anoikis resistance and tumor metastasis and suggest ATF4 and HO-1 as potential targets for therapeutic intervention in solid tumors.

204 citations


Journal ArticleDOI
29 May 2015-Science
TL;DR: It is reported that ISRIB reverses the inhibitory effect of eif2α phosphorylation on the activity of eIF2B, a dedicated guanine nucleotide exchange factor, enhancing its activity independently of phosphorylate, which lies at the core of the integrated stress response.
Abstract: The integrated stress response (ISR) modulates messenger RNA translation to regulate the mammalian unfolded protein response (UPR), immunity, and memory formation. A chemical ISR inhibitor, ISRIB, enhances cognitive function and modulates the UPR in vivo. To explore mechanisms involved in ISRIB action, we screened cultured mammalian cells for somatic mutations that reversed its effect on the ISR. Clustered missense mutations were found at the amino-terminal portion of the delta subunit of guanine nucleotide exchange factor (GEF) eIF2B. When reintroduced by CRISPR-Cas9 gene editing of wild-type cells, these mutations reversed both ISRIB-mediated inhibition of the ISR and its stimulatory effect on eIF2B GEF activity toward its substrate, the translation initiation factor eIF2, in vitro. Thus, ISRIB targets an interaction between eIF2 and eIF2B that lies at the core of the ISR.

193 citations


Journal ArticleDOI
23 Nov 2015-eLife
TL;DR: It is proposed that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.
Abstract: The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.

145 citations


Journal ArticleDOI
TL;DR: It is determined that WNT stimulates glutamine catabolism through the tricarboxylic acid (TCA) cycle and consequently lowers intracellular glutamine levels and suggests that manipulation of the glutamine/GCN2 signaling axis may provide a valuable approach for normalizing deranged protein anabolism associated with human diseases.
Abstract: WNT signaling stimulates bone formation by increasing both the number of osteoblasts and their protein-synthesis activity. It is not clear how WNT augments the capacity of osteoblast progenitors to meet the increased energetic and synthetic needs associated with mature osteoblasts. Here, in cultured osteoblast progenitors, we determined that WNT stimulates glutamine catabolism through the tricarboxylic acid (TCA) cycle and consequently lowers intracellular glutamine levels. The WNT-induced reduction of glutamine concentration triggered a general control nonderepressible 2–mediated (GCN2-mediated) integrated stress response (ISR) that stimulated expression of genes responsible for amino acid supply, transfer RNA (tRNA) aminoacylation, and protein folding. WNT-induced glutamine catabolism and ISR were β-catenin independent, but required mammalian target of rapamycin complex 1 (mTORC1) activation. In a hyperactive WNT signaling mouse model of human osteosclerosis, inhibition of glutamine catabolism or Gcn2 deletion suppressed excessive bone formation. Together, our data indicate that glutamine is both an energy source and a protein-translation rheostat that is responsive to WNT and suggest that manipulation of the glutamine/GCN2 signaling axis may provide a valuable approach for normalizing deranged protein anabolism associated with human diseases.

119 citations


Journal ArticleDOI
TL;DR: Whether the UPRmt is relevant to mitochondrial homeostasis in mammals is addressed and the putative role of integrated stress response (ISR) activation in response to the inhibition of mtDNA expression and/or accumulation of mitochondrial mis/unfolded proteins is analyzed.
Abstract: Mitochondrial unfolded protein response is a form of retrograde signaling that contributes to ensuring the maintenance of quality control of mitochondria, allowing functional integrity of the mitochondrial proteome. When misfolded proteins or unassembled complexes accumulate beyond the folding capacity, it leads to alteration of proteostasis, damages, and organelle/cell dysfunction. Extensively studied for the ER, it was recently reported that this kind of signaling for mitochondrion would also be able to communicate with the nucleus in response to impaired proteostasis. The mitochondrial unfolded protein response (UPRmt) is activated in response to different types and levels of stress, especially in conditions where unfolded or misfolded mitochondrial proteins accumulate and aggregate. A specific UPRmt could thus be initiated to boost folding and degradation capacity in response to unfolded and aggregated protein accumulation. Although first described in mammals, the UPRmt was mainly studied in Caenorhabditis elegans, and accumulating evidence suggests that mechanisms triggered in response to a UPRmt might be different in C. elegans and mammals. In this review, we discuss and integrate recent data from the literature to address whether the UPRmt is relevant to mitochondrial homeostasis in mammals and to analyze the putative role of integrated stress response (ISR) activation in response to the inhibition of mtDNA expression and/or accumulation of mitochondrial mis/unfolded proteins.

100 citations


Journal ArticleDOI
TL;DR: Disruption of mitochondrial fission in the liver provoked ER stress, while inducing the expression of FGF21 to increase energy expenditure and protect against HFD-induced obesity.
Abstract: Mitochondria and the endoplasmic reticulum (ER) physically interact by close structural juxtaposition, via the mitochondria-associated ER membrane Inter-organelle communication between the ER and mitochondria has been shown to regulate energy metabolism and to be central to the modulation of various key processes such as ER stress We aimed to clarify the role of mitochondrial fission in this communication We generated mice lacking the mitochondrial fission protein dynamin-related protein 1 (DRP1) in the liver (Drp1LiKO mice) Drp1LiKO mice showed decreased fat mass and were protected from high-fat diet (HFD)-induced obesity Analysis of liver gene expression profiles demonstrated marked elevation of ER stress markers In addition, we observed increased expression of the fibroblast growth factor 21 (FGF21) gene through induction of activating transcription factor 4, master regulator of the integrated stress response Disruption of mitochondrial fission in the liver provoked ER stress, while inducing the expression of FGF21 to increase energy expenditure and protect against HFD-induced obesity

99 citations


Journal ArticleDOI
TL;DR: In this article, the integrated stress response using guanabenz increases oligodendrocyte survival in culture and prevents hypomyelination in cerebellar explants in the presence of interferon-γ, a pro-inflammatory cytokine implicated in MS pathogenesis.
Abstract: Oligodendrocyte death contributes to the pathogenesis of the inflammatory demyelinating disease multiple sclerosis (MS). Nevertheless, current MS therapies are mainly immunomodulatory and have demonstrated limited ability to inhibit MS progression. Protection of oligodendrocytes is therefore a desirable strategy for alleviating disease. Here we demonstrate that enhancement of the integrated stress response using the FDA-approved drug guanabenz increases oligodendrocyte survival in culture and prevents hypomyelination in cerebellar explants in the presence of interferon-γ, a pro-inflammatory cytokine implicated in MS pathogenesis. In vivo, guanabenz treatment protects against oligodendrocyte loss caused by CNS-specific expression of interferon-γ. In a mouse model of MS, experimental autoimmune encephalomyelitis, guanabenz alleviates clinical symptoms, which correlates with increased oligodendrocyte survival and diminished CNS CD4+ T cell accumulation. Moreover, guanabenz ameliorates relapse in relapsing-remitting experimental autoimmune encephalomyelitis. Our results provide support for a MS therapy that enhances the integrated stress response to protect oligodendrocytes against the inflammatory CNS environment.

95 citations


Journal ArticleDOI
TL;DR: It is suggested that targeting the ISR pathway may be an efficient mechanism for enhancing therapeutic responsiveness to Gem in PDAC by activating multiple ISR-dependent pathways, including eIF 2, Nrf2, Nupr1, BEX2, and Bcl2A1.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with marked chemoresistance and a 5-year survival rate of 7%. The integrated stress response (ISR) is a cytoprotective pathway initiated in response to exposure to various environmental stimuli. We used pancreatic cancer cells (PCCs) that are highly resistant to gemcitabine (Gem) and an orthotopic mouse model to investigate the role of the ISR in Gem chemoresistance. Gem induced eIF2 phosphorylation and downstream transcription factors ATF4 and CHOP in PCCs, and these effects occurred in an eIF2α-S51 phosphorylation-dependent manner as determined using PANC-1 cells, and wild type and S51 mutant mouse embryo fibroblasts. Blocking the ISR pathway in PCCs with the ISR inhibitor ISRIB or siRNA-mediated depletion of ATF4 resulted in enhanced Gem-mediated apoptosis. Polyribosomal profiling revealed that Gem caused repression of global translation and this effect was reversed by ISRIB or by expressing GADD34 to facilitate eIF2 dephosphorylation. Moreover, Gem promoted preferential mRNA translation as determined in a TK-ATF4 5'UTR-Luciferase reporter assay, and this effect was also reversed by ISRIB. RNA-seq analysis revealed that Gem upregulated eIF2 and Nrf2 pathways, and that ISRIB significantly inhibited these pathways. Gem also induced the expression of the antiapoptotic factors Nupr1, BEX2, and Bcl2a1, whereas ISRIB reduced their expression. In an orthotopic tumor model using PANC-1 cells, ISRIB facilitated Gem-mediated increases in PARP cleavage, which occurred in conjunction with decreased tumor size. These findings indicate that Gem chemoresistance is enhanced by activating multiple ISR-dependent pathways, including eIF2, Nrf2, Nupr1, BEX2, and Bcl2A1. It is suggested that targeting the ISR pathway may be an efficient mechanism for enhancing therapeutic responsiveness to Gem in PDAC.

89 citations


Journal ArticleDOI
TL;DR: Virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.
Abstract: Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.

Journal ArticleDOI
TL;DR: It is shown that altered/impaired expression of mtDNA induces CHOP-10 expression in a signaling pathway that depends on the eIF2α/ATF4 axis of the integrated stress response rather than on the mitochondrial unfolded protein response.

Journal ArticleDOI
TL;DR: In this article, the 5′-leaders of GADD34 and CReP contain two upstream ORFs (uORFs), and the authors show that features of these uORFs are central for their differential expression.

Journal ArticleDOI
TL;DR: The data suggest that the brain serotonergic system, although likely involved in the recognition of the stressor stimuli, is not the only actor determining the magnitude and duration of the acute stress response in trout.
Abstract: After an intense acute stressor, fish develop a metabolic and behavioural response that usually lasts for several hours. Brain monoaminergic systems, particularly the serotonergic system, appear to play a key role in the central regulation of the stress response. However, the influence of stressor severity on brain monoaminergic systems and on the induced stress responses is yet poorly understood. We hypothesise that serotonergic system could have a direct role in the integration of sensory information during stressor exposure and in the organisation of the subsequent integrated stress response. According to our hypothesis, a low stressor intensity would induce a low response of brain serotonergic system and therefore stress responses of low magnitude and duration. To test this hypothesis, we exposed fish to handling disturbance for 5 s, 15 s or 3 min. We sampled fish at 0 (controls), 3, 15, 45 and 240 min after the start of the stress protocol. Brain levels of serotonin, dopamine and their respective main oxidative metabolites were quantified, along with plasma levels of stress markers (catecholamines, cortisol, glucose and lactate). Regarding stress markers, the 5-s and 15-s stress protocols induced similar and relatively low elevations in all parameters assessed. As expected, the 3-min protocol induced responses of a higher intensity and duration in all plasma parameters. Interestingly, the alterations of brain monoaminergic systems did not follow the same trend. The three stress protocols induced increases in the serotonergic activity in all brain regions analysed (hypothalamus, telencephalon and medulla oblongata), independently of the duration of the handling disturbance, whereas the effects on the dopaminergic system were minor and brain region-dependent. These data suggest that the brain serotonergic system, although likely involved in the recognition of the stressor stimuli, is not the only actor determining the magnitude and duration of the acute stress response in trout.

Journal ArticleDOI
TL;DR: Gadd34‐mediated regulation of ISR acts as a physiological defense mechanism against impaired liver regeneration resulting from steatosis and is thus a possible therapeutic target for impaired regeneration in HS.

Journal ArticleDOI
TL;DR: This work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression.
Abstract: Translation is a fundamental cellular process, and its dysregulation can contribute to human diseases such as cancer. During translation initiation the eukaryotic initiation factor 2 (eIF2) forms a ternary complex (TC) with GTP and the initiator methionyl-tRNA (tRNAi), mediating ribosomal recruitment of tRNAi. Limiting TC availability is a central mechanism for triggering the integrated stress response (ISR), which suppresses global translation in response to various cellular stresses, but induces specific proteins such as ATF4. This study shows that OLA1, a member of the ancient Obg family of GTPases, is an eIF2-regulatory protein that inhibits protein synthesis and promotes ISR by binding eIF2, hydrolyzing GTP, and interfering with TC formation. OLA1 thus represents a novel mechanism of translational control affecting de novo TC formation, different from the traditional model in which phosphorylation of eIF2α blocks the regeneration of TC. Depletion of OLA1 caused a hypoactive ISR and greater survival in stressed cells. In vivo, OLA1-knockdown rendered cancer cells deficient in ISR and the downstream proapoptotic effector, CHOP, promoting tumor growth and metastasis. Our work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression.

Journal ArticleDOI
TL;DR: It is shown that autophagy uniquely modulates mTORC1 and the integrated stress response in an amino acid‐dependent and ‐independent manner, respectively, and protects the eIF2α‐mediated stress response independent of amino acid supply in cultured myotubes.
Abstract: Induction of autophagy and the integrated stress response is important for amino acid homeostasis. It remains unknown whether the autophagy coregulates both mechanistic target of rapamycin complex 1 (mTORC1) signaling and the integrated stress response. In mouse C2C12 myotubes, we found that amino acid limitation induced autophagy and that the subsequent release of amino acid is required to sustain mTORC1 signaling. Inhibition of autophagy by bafilomycin A1 or chloroquine treatment during amino acid scarcity abolished mTORC1 signaling, an effect that could be rescued by inhibiting protein synthesis or amino acid supplementation, respectively. Autophagy is required to sustain the balance of both essential and nonessential amino acids during amino acid starvation, and it has a predominant role over the ubiquitin-proteasome system in the regulation of mTORC1. Inhibition of autophagy was found to activate the integrated stress response, as well as eukaryotic initiation factor 2α (eIF2α) and its target genes independent of amino acid availability. Conversely, autophagy induction via mTOR inhibition is sufficient to reduce eIF2α phosphorylation. Thus, autophagy protects the eIF2α-mediated stress response independent of amino acid supply in cultured myotubes. Our results showed that autophagy uniquely modulates mTORC1 and the integrated stress response in an amino acid-dependent and -independent manner, respectively.

Journal ArticleDOI
TL;DR: How conditions found in the tumor microenvironment regulate mTORC1 as well as eIF2α, the downstream impact of these modifications, and the implications in tumorigenesis are described.
Abstract: The hostile tumor microenvironment results in the generation of intracellular stresses including hypoxia and nutrient deprivation In order to adapt to such conditions, the cell utilizes several stress-response mechanisms, including the attenuation of protein synthesis, the inhibition of cellular proliferation, and induction of autophagy Autophagy leads to the degradation of cellular contents, including damaged organelles and mutant proteins, which the cell can then use as an alternate energy source Two integral changes to the signaling milieu to promote such a response include inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and phosphorylation of eIF2α This review will describe how conditions found in the tumor microenvironment regulate mTORC1 as well as eIF2α, the downstream impact of these modifications, and the implications in tumorigenesis We will then discuss the remarkable similarities and overlapping function of these 2 signaling pathways, focusing on the response to amino acid deprivation, and present a new model involving crosstalk between them based on our recent work

Journal ArticleDOI
TL;DR: Activation of the Integrated Stress Response (ISR) kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation of the eukaryotic translation initiation factor eIF2α.
Abstract: Multiple transcripts encode for the cell cycle inhibitor p21Cip1. These transcripts produce identical proteins but differ in their 5’ untranslated regions (UTRs). Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through 35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR) kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress.

Journal ArticleDOI
TL;DR: It is demonstrated in a genetically engineered mouse model of soft tissue sarcoma that loss of GCN2 has no effect on tumor growth or animal survival, and these results have important implications for the development and testing of small molecule inhibitors of ISR kinases as cancer therapeutics.
Abstract: The tumor microenvironment is characterized by deficiencies in oxygen and nutrients, such as glucose and amino acids. Activation of the GCN2 arm of the Integrated Stress Response (ISR) in response to amino acid deprivation is one mechanism by which tumor cells cope with nutrient stress. GCN2 phosphorylates the alpha subunit of the eukaryotic translation initiation factor eIF2, leading to global downregulation of translation to conserve amino acids and initiation of a transcriptional program through ATF4 to promote recovery from nutrient deprivation. Loss of GCN2 results in decreased tumor cell survival in vitro under amino acid deprivation and attenuated tumor growth in xenograft tumor models. However, it is not known what effects GCN2 loss has on the growth of autochthonous tumors that arise in their native microenvironment. Here, we demonstrate in a genetically engineered mouse model of soft tissue sarcoma that loss of GCN2 has no effect on tumor growth or animal survival. The sarcomas displayed compensatory activation of PERK or phospho-eIF2α independent upregulation of ATF4 in order to maintain ISR signaling, indicating that this pathway is critical for tumorigenesis. These results have important implications for the development and testing of small molecule inhibitors of ISR kinases as cancer therapeutics.

Journal ArticleDOI
TL;DR: It is shown here that the mRNA of CReP/Ppp1r15b, a regulatory subunit of eukaryotic translation initiation factor 2α (eIF2α) phosphatase, is a RIDD substrate, which plays a central role in the integrated stress response by mediating the translational attenuation to decrease the stress level in the cell.
Abstract: The unfolded protein response (UPR) regulates endoplasmic reticulum (ER) homeostasis and protects cells from ER stress. IRE1α is a central regulator of the UPR that activates the transcription factor XBP1s through an unconventional splicing mechanism using its endoribonuclease activity. IRE1α also cleaves certain mRNAs containing XBP1-like secondary structures to promote the degradation of these mRNAs, a process known as regulated IRE1α-dependent decay (RIDD). We show here that the mRNA of CReP/Ppp1r15b, a regulatory subunit of eukaryotic translation initiation factor 2α (eIF2α) phosphatase, is a RIDD substrate. eIF2α plays a central role in the integrated stress response by mediating the translational attenuation to decrease the stress level in the cell. CReP expression was markedly suppressed in XBP1-deficient mice livers due to hyperactivated IRE1α. Decreased CReP expression caused the induction of eIF2α phosphorylation and the attenuation of protein synthesis in XBP1-deficient livers. ER stress also suppressed CReP expression in an IRE1α-dependent manner, which increased eIF2α phosphorylation and consequently attenuated protein synthesis. Taken together, the results of our study reveal a novel function of IRE1α in the regulation of eIF2α phosphorylation and the translational control.

Journal ArticleDOI
Myung-Shik Lee1
TL;DR: The results suggest the possibility that mitochondrial stress inducing an integrated stress response can induce a mitokine response and affect systemic metabolism in a non‐cell‐autonomous manner, in addition to the well‐recognized cell-autonomous role of mitochondrial function in metabolism.
Abstract: In our studies investigating the role of autophagy in systemic metabolism, we found that mitochondrial dysfunction due to autophagy deficiency in insulin target tissues, such as skeletal muscle or liver, leads to the induction of fibroblast growth factor (FGF)21 as a mitokine and protection against obesity and insulin resistance. In the following studies, we observed that metformin, one of the most widely used antidiabetic medications, induces mitochondrial stress and induces FGF21 through a PERK-eIF2α-ATF4 pathway, which may contribute to the antidiabetic effect of metformin. Amino acid deprivation also induced ATF4 and FGF21, while the role of mitochondrial dysfunction in this condition is not yet clear. These results suggest the possibility that mitochondrial stress inducing an integrated stress response can induce a mitokine response and affect systemic metabolism in a non-cell-autonomous manner, in addition to the well-recognized cell-autonomous role of mitochondrial function in metabolism.

Journal ArticleDOI
TL;DR: It was determined that UVB irradiation is a potent inducer of eIF2~P in keratinocytes, leading to decreased levels of translation initiation, which was alleviated by cycloheximide, indicating that translation repression through eIF 2~P is central to keratinocyte survival.

Journal ArticleDOI
17 Mar 2015-PLOS ONE
TL;DR: It is confirmed that hemozoin induces cellular stress on erythroblasts that is additional to and distinct from responses to inflammatory cytokines and identifies new genes that may be involved in the pathogenesis of severe malarial anemia.
Abstract: The role of infection in erythropoietic dysfunction is poorly understood. In children with P. falciparum malaria, the by-product of hemoglobin digestion in infected red cells (hemozoin) is associated with the severity of anemia which is independent of circulating levels of the inflammatory cytokine tumor necrosis alpha (TNF-α). To gain insight into the common and specific effects of TNF-α and hemozoin on erythropoiesis, we studied the gene expression profile of purified primary erythroid cultures exposed to either TNF-α (10ng/ml) or to hemozoin (12.5μg/ml heme units) for 24 hours. Perturbed gene function was assessed using co-annotation of associated gene ontologies and expression of selected genes representative of the profile observed was confirmed by real time PCR (rtPCR). The changes in gene expression induced by each agent were largely distinct; many of the genes significantly modulated by TNF-α were not affected by hemozoin. The genes modulated by TNF-α were significantly enriched for those encoding proteins involved in the control of type 1 interferon signalling and the immune response to viral infection. In contrast, genes induced by hemozoin were significantly enriched for functional roles in regulation of transcription and apoptosis. Further analyses by rtPCR revealed that hemozoin increases expression of transcription factors that form part of the integrated stress response which is accompanied by reduced expression of genes involved in DNA repair. This study confirms that hemozoin induces cellular stress on erythroblasts that is additional to and distinct from responses to inflammatory cytokines and identifies new genes that may be involved in the pathogenesis of severe malarial anemia. More generally the respective transcription profiles highlight the varied mechanisms through which erythropoiesis may be disrupted during infectious disease.

20 Nov 2015
TL;DR: The results show that properties of uORFs that permit ribosome reinitiation are critical for directing gene-specific translational control in the integrated stress response.
Abstract: In the integrated stress response, phosphorylation of eIF2α (eIF2α-P) reduces protein synthesis to conserve resources and facilitate preferential translation of transcripts that promote stress adaptation. Preferentially translated GADD34 (PPP1R15A) and constitutively expressed CReP (PPP1R15B) function to dephosphorylate eIF2α-P and restore protein synthesis. The 5′-leaders of GADD34 and CReP contain two upstream ORFs (uORFs). Using biochemical and genetic approaches we show that features of these uORFs are central for their differential expression. In the absence of stress, translation of an inhibitory uORF in GADD34 acts as a barrier that prevents reinitiation at the GADD34 coding region. Enhanced eIF2α-P during stress directs ribosome bypass of the uORF, facilitating translation of the GADD34 coding region. CReP expression occurs independent of eIF2α-P via an uORF that allows for translation reinitiation at the CReP coding region independent of stress. Importantly, alterations in the GADD34 uORF affect the status of eIF2α-P, translational control, and cell adaptation to stress. These results show that properties of uORFs that permit ribosome reinitiation are critical for directing gene-specific translational control in the integrated stress response.

Journal ArticleDOI
TL;DR: The combined in vivo and in vitro data suggest that prolonged opioid treatment induces the integrated stress response in the central nervous system; it modulates translational machinery in favor of specific mRNA and this may contribute to the drug-induced changes in neuronal plasticity.
Abstract: Oxycodone is an opioid that is prescribed to treat multiple types of pain, especially when other opioids are ineffective. Unfortunately, similar to other opioids, repetitive oxycodone administration has the potential to lead to development of analgesic tolerance, withdrawal, and addiction. Studies demonstrate that chronic opioid exposure, including oxycodone, alters gene expression profiles and that these changes contribute to opioid-induced analgesic effect, tolerance and dependence. However, very little is known about opioids altering the translational machinery of the central nervous system. Considering that opioids induce clinically significant levels of hypoxia, increase intracellular Ca2+ levels, and induce the production of nitric oxide and extracellular glutamate transmission, we hypothesize that opioids also trigger a defensive mechanism called the integrated stress response (ISR). The key event in the ISR activation, regardless of the trigger, is phosphorylation of translation initiation factor 2 alpha (eIF2α), which modulates expression and translational activation of specific mRNAs important for adaptation to stress. To test this hypothesis, we used an animal model in which female rats were orally gavaged with 15 mg/kg of oxycodone every 24 h for 30 days. We demonstrated increased levels of hsp70 and BiP expression as well as phosphorylation of eIF2α in various rat brain areas after oxycodone administration. Polysomal analysis indicated oxycodone-induced translational stimulation of ATF4 and PDGFRα mRNAs, which have previously been shown to depend on the eIF2α kinase activation. Moreover, using breast adenocarcinoma MCF7 cells, which are known to express the μ-opioid receptor, we observed induction of the ISR pathway after one 24-h treatment with oxycodone. The combined in vivo and in vitro data suggest that prolonged opioid treatment induces the integrated stress response in the central nervous system; it modulates translational machinery in favor of specific mRNA and this may contribute to the drug-induced changes in neuronal plasticity.

Journal ArticleDOI
TL;DR: An overview of how two key signaling pathways, namely the integrated stress response and the mammalian target of rapamycin complex 1, work together to facilitate cellular adaptation to dietary amino acid insufficiency is provided.

Journal ArticleDOI
TL;DR: It is shown that IFNγ-mediated induction of cFLIP expression provides a new mechanism by which this cytokine can protect oligodendrocytes from TNFα-induced cell death and decrease of myelin in vivo.
Abstract: Neuroinflammation associated with degenerative central nervous system disease and injury frequently results in oligodendrocyte death. While promoting oligodendrocyte viability is a major therapeutic goal, little is known about protective signaling strategies. We report that in highly purified rat oligodendrocytes, interferon gamma (IFNγ) activates a signaling pathway that protects these cells from tumor necrosis factor alpha (TNFα)-induced cytotoxicity. IFNγ protection requires Jak (Janus kinase) activation, components of the integrated stress response and NF-κB activation. Although NF-κB activation also occurred transiently in the absence of IFNγ and presence of TNFα, this activation was not sufficient to prevent induction of the TNFα-responsive cell death pathway. Genetic inhibition of NF-κB translocation to the nucleus abrogated IFNγ-mediated protection and did not change the cell death induced by TNFα, suggesting that NF-κB activation via IFNγ induces a different set of responses than activation of NF-κB via TNFα. A promising candidate is the NF-κB target cFLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein), which is protease-deficient caspase homolog that inhibits caspase-3 activation. We show that IFNγ-mediated protection led to upregulation of cFLIP. Overexpression of cFLIP was sufficient for oligodendrocyte protection from TNFα and short hairpin RNA knockdown of cFLIP-abrogated IFNγ -mediated protection. To determine the relevance of our in vitro finding to the more complex in vivo situation, we determined the impact on oligodendrocyte death of regional cFLIP loss of function in a murine model of neuroinflammation. Our data show that downregulation of cFLIP during inflammation leads to death of oligodendrocytes and decrease of myelin in vivo. Taken together, we show that IFNγ-mediated induction of cFLIP expression provides a new mechanism by which this cytokine can protect oligodendrocytes from TNFα-induced cell death.

06 Jun 2015
TL;DR: The detailed molecular mechanism for regulation of autophagy and cellular senescence is complex and the role of autophile and senescences is overlap significantly, and the roles are summarized in pulmonary disease pathogeneses.
Abstract: Autophagy is a process of lysosomal self-degradation that helps maintain homeostatic balance between the synthesis, degradation and recycling of cellular proteins and organelles. In addition to nutrient starvation, a wide array of cellular stresses are also known to be strong inducers of autophagy, indicating that autophagy is not only simple amino acid supply machinery in response to energy demand but also a central component of the integrated stress response for cytoprotection. Since autophagy is an adaptive pathway of cytoprotection from cellular stresses, involving starvation, reactive oxygen species, endoplasmic reticulum stress, and microbe infection, it is reasonable to suggest that autophagy is closely related with aging. Indeed, autophagy diminishes with aging and accelerated aging can be attributed to reduced autophagy. Cellular senescence is also one of the cellular stress responses as well as autophagy, and considered to be one of the processes of aging. Cellular senescence has been widely implicated in disease pathogenesis in terms of not only impaired cell repopulation but also aberrant cytokine secretions of senescence associated secretory phenotype, which may exert deleterious effects on the tissue microenvironment of neighboring cells. The detailed molecular mechanism for regulation of autophagy and cellular senescence is complex and the role of autophagy and cellular senescence is overlap significantly. We review molecular mechanisms of autophagy and cellular senescence, and summarize the role of autophagy and cellular senescence in pulmonary disease pathogeneses.

Journal ArticleDOI
TL;DR: It is reported that whereas the ISR is reproduced by eIF2αS51D expression in human HEK293T cells this is not the case in N2a mouse neuroblastoma cells, and this is the first demonstration that the inhibitory and reinitiation functions of eIF1αS/D can be separated.
Abstract: A plethora of stresses trigger a rapid downregulation of protein synthesis. However, a fraction of mRNAs continue to be recruited onto polysomes and their protein products play a key role in deciding cell fate. These transcripts are characterized by the presence of uORFs within their 5' TL coupling protein expression to reinitiation. The translational brake arises due to the activation of a family of kinases targeting the α subunit of the trimolecular eIF2(αβγ) initiation factor. Phosphorylation of eIF2αSer51 inhibits ternary complex regeneration reducing the pool of 43S ribosomes. It is popular to mimic this event, and hence the integrated stress response (ISR), by the expression of the phosphomimetic eIF2αS51D. However, we report that whereas the ISR is reproduced by eIF2αS51D expression in human HEK293T cells this is not the case in N2a mouse neuroblastoma cells. With regards to translational downregulation, this arises due to the failure of the phosphomimetic protein to assemble an eIF2 complex with endogenous eIF2β/γ. This can be compensated for by the transient co-expression of all three subunits. Curiously, these conditions do not modulate reinitiation and consequently fail to trigger the ISR. This is the first demonstration that the inhibitory and reinitiation functions of eIF2αS/D can be separated.