scispace - formally typeset
Search or ask a question

Showing papers on "Magnetic domain published in 2013"


Journal ArticleDOI
TL;DR: An internal effective magnetic field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire.
Abstract: Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin–orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii–Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices. The influence of magnetic fields on the current-driven motion of domain walls in nanowires with perpendicular anisotropy shows that two spin–orbit-derived mechanisms are responsible for their motion.

1,114 citations


Journal ArticleDOI
TL;DR: The present work shows how the property of magnetic anisotropy can be predicted based on the coordination numbers and electronic structures of paramagnetic centers based on Co(II) complexes known from literature and confirms the predicted single-molecule magnet behavior.
Abstract: Magnetic anisotropy is the property that confers to the spin a preferred direction that could be not aligned with an external magnetic field. Molecules that exhibit a high degree of magnetic anisotropy can behave as individual nanomagnets in the absence of a magnetic field, due to their predisposition to maintain their inherent spin direction. Until now, it has proved very hard to predict magnetic anisotropy, and as a consequence, most synthetic work has been based on serendipitous processes in the search for large magnetic anisotropy systems. The present work shows how the property can be predicted based on the coordination numbers and electronic structures of paramagnetic centers. Using these indicators, two CoII complexes known from literature have been magnetically characterized and confirm the predicted single-molecule magnet behavior.

368 citations


Journal ArticleDOI
TL;DR: It is shown that the Dzyaloshinskii-Moriya interaction can be adjusted to stabilize either left-handed or right-handed Néel walls, or non-chiral Bloch walls by adjusting an interfacial spacer layer between the multilayers and the substrate.
Abstract: Contacting ferromagnetic films with normal metals changes how magnetic textures respond to electric currents, enabling surprisingly fast domain wall motions and spin texture-dependent propagation direction. These effects are attributed to domain wall chirality induced by the Dzyaloshinskii-Moriya interaction at interfaces, which suggests rich possibilities to influence domain wall dynamics if the Dzyaloshinskii-Moriya interaction can be adjusted. Chiral magnetism was seen in several film structures on appropriately chosen substrates where interfacial spin-orbit-coupling effects are strong. Here we use real-space imaging to visualize chiral domain walls in cobalt/nickel multilayers in contact with platinum and iridium. We show that the Dzyaloshinskii-Moriya interaction can be adjusted to stabilize either left-handed or right-handed Neel walls, or non-chiral Bloch walls by adjusting an interfacial spacer layer between the multilayers and the substrate. Our findings introduce domain wall chirality as a new degree of freedom, which may open up new opportunities for spintronics device designs.

347 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that ultrathin ferromagnetic Pt/Co/Pt films with perpendicular magnetic anisotropy exhibit a sizable Dzyaloshinskii-Moriya interaction (DMI) effect.
Abstract: We demonstrate here that ultrathin ferromagnetic Pt/Co/Pt films with perpendicular magnetic anisotropy exhibit a sizable Dzyaloshinskii-Moriya interaction (DMI) effect. Such a DMI effect modifies the domain-wall (DW) energy density and consequently, results in an asymmetric DW expansion driven by an out-of-plane magnetic field under an in-plane magnetic field bias. From an analysis of the asymmetry, the DMI effect is estimated to be strong enough for the DW to remain in the N\'eel-type configuration in contrast to the general expectations of these materials. Our findings emphasize the critical role of the DMI effect on the DW dynamics as the underlying physics of the asymmetries that are often observed in spin-transfer-related phenomena.

341 citations


Journal ArticleDOI
TL;DR: Optical manipulation of magnetic order by femtosecond laser pulses has developed into an exciting and still expanding research field that keeps being fueled by a continuous stream of new and sometimes counterintuitive results, which may also potentially revolutionize data storage and information processing technologies.
Abstract: This review discusses the recent studies of magnetization dynamics and the role of angular momentum in thin films of ferrimagnetic rare-earth-transition metal (RE-TM) alloys, e.g. GdFeCo, where both magnetization and angular momenta are temperature dependent. It has been experimentally demonstrated that the magnetization can be manipulated and even reversed by a single 40 fs laser pulse, without any applied magnetic field. This switching is found to follow a novel reversal pathway, that is shown however to depend crucially on the net angular momentum, reflecting the balance of the two opposite sublattices. In particular, optical excitation of ferrimagnetic GdFeCo on a time scale pertinent to the characteristic time of the exchange interaction between the RE and TM spins, i.e. on the time scale of tens of femtoseconds, pushes the spin dynamics into a yet unexplored regime, where the two exchange-coupled magnetic sublattices demonstrate substantially different dynamics. As a result, the reversal of spins appears to proceed via a novel transient state characterized by a ferromagnetic alignment of the Gd and Fe magnetic moments, despite their ground-state antiferromagnetic coupling.Thus, optical manipulation of magnetic order by femtosecond laser pulses has developed into an exciting and still expanding research field that keeps being fueled by a continuous stream of new and sometimes counterintuitive results. Considering the progress in the development of plasmonic antennas and compact ultrafast lasers, optical control of magnetic order may also potentially revolutionize data storage and information processing technologies.

305 citations


Journal ArticleDOI
TL;DR: By combining magneto-optical Kerr effect and magnetoresistance measurements, it is shown that domain wall propagation fields can be doubled under locally applied strains, highlighting the prospect of constructing low-power domain wall gates for magnetic logic devices.
Abstract: The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

263 citations


Journal ArticleDOI
TL;DR: Using spin-polarized low energy electron microscopy, a new type of domain wall structure is discovered in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100) suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces.
Abstract: Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Neel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

230 citations


Journal ArticleDOI
TL;DR: It is shown that ferrimagnetic ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled exchange bias during the virgin magnetization process.
Abstract: We report a large exchange-bias effect after zero-field cooling the new tetragonal Heusler compound ${\mathrm{Mn}}_{2}\mathrm{PtGa}$ from the paramagnetic state. The first-principles calculation and the magnetic measurements reveal that ${\mathrm{Mn}}_{2}\mathrm{PtGa}$ orders ferrimagnetically with some ferromagnetic inclusions. We show that ferrimagnetic ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled exchange bias during the virgin magnetization process. The complex magnetic behavior at low temperatures is characterized by the coexistence of a field-induced irreversible magnetic behavior and a spin-glass-like phase. The field-induced irreversibility originates from an unusual first-order ferrimagnetic to antiferromagnetic transition, whereas the spin-glass-like state forms due to the existence of antisite disorder intrinsic to the material.

193 citations


Journal ArticleDOI
TL;DR: The magnetostatic exchange length is an important parameter in magnetics, as it measures the relative strength of exchange and self-magnetostatic energies as mentioned in this paper, and it can be found in areas of magnetics including micromagnetic, soft and hard magnetic materials, and information storage.
Abstract: The magnetostatic exchange length is an important parameter in magnetics as it measures the relative strength of exchange and self-magnetostatic energies. Its use can be found in areas of magnetics including micromagnetics, soft and hard magnetic materials, and information storage. The exchange length is of primary importance because it governs the width of the transition between magnetic domains. Unfortunately, there is some confusion in the literature between the magnetostatic exchange length and a similar distance concerning magnetization reversal mechanisms in particles known as the characteristic length. This confusion is aggravated by the common usage of two different systems of units, SI and cgs. This paper attempts to clarify the situation and recommends equations in both systems of units.

193 citations


Journal ArticleDOI
TL;DR: Cr2Ge2Te6 is proposed as an insulating ferromagnetic substrate for the growth of tetradymite-type topological insulators, based on a refined characterization of its transport, magnetic, optical, and calculated electronic properties.
Abstract: Cr2Ge2Te6 is proposed as an insulating ferromagnetic substrate for the growth of tetradymite-type topological insulators, based on a refined characterization of its transport, magnetic, optical, and calculated electronic properties It is found to be a soft ferromagnet with no visible magnetic domains over relatively large length scales and to be highly insulating with an indirect band gap and low carrier concentration Further we present the fabrication of Bi2Te3-Cr2Ge2Te6 heterostructure samples by chemical vapor deposition and show that crystals of the two phases are oriented such that the hexagonal Te planes are aligned at their interfaces V C 2013 AIP Publishing LLC

156 citations


Journal ArticleDOI
TL;DR: In this paper, very small superparamagnetic iron oxide nanoparticles were characterized by innovative synchrotron X-ray total scattering methods and Debye function analysis, using the information from both Bragg and diffuse scattering, size-dependent core-shell magnetite-maghemite compositions and full size distributions were derived within a coherent approach.
Abstract: Very small superparamagnetic iron oxide nanoparticles were characterized by innovative synchrotron X-ray total scattering methods and Debye function analysis. Using the information from both Bragg and diffuse scattering, size-dependent core–shell magnetite–maghemite compositions and full size (number- and mass-based) distributions were derived within a coherent approach. The magnetite core radii in 10 nm sized NPs well match the magnetic domain sizes and show a clear correlation to the saturation magnetization values, while the oxidized shells seem to be magnetically silent. Very broad superstructure peaks likely produced by the polycrystalline nature of the surface layers were experimentally detected in room temperature oxidized samples. Effective magnetic anisotropy constants, derived by taking the knowledge of the full size-distributions into account, show an inverse dependence on the NPs size, witnessing a major surface contribution. Finally, an additional amorphous component was uncovered within the ...

Journal ArticleDOI
TL;DR: The magnetic transition from a hybrid magnetic state with both vortex and transverse DW in 85 nm diameter Ni nanocylinders to a pure transverse wall in thinner nanowires is demonstrated.
Abstract: We present the first experimental imaging of the internal DW structure in 55 and 85 nm diameter Ni nanocylinders, using electron holography combined with micromagnetic calculations. We demonstrate the magnetic transition from a hybrid magnetic state with both vortex and transverse DW in 85 nm diameter Ni nanocylinders to a pure transverse wall in thinner nanowires. This is particularly important as DWs in nanocylinders are model systems to go beyond the classical Walker limit.

Journal ArticleDOI
TL;DR: Temperature-dependent measurements reveal that the SkX is stable over a larger range in this NW system (6-35 K) compared to the narrow temperature regime of skyrmion phase in bulk MnSi (26-30 K) and thin films of Mn Si (5-23 K).
Abstract: We report here the real-space observation of skyrmions and helical magnetic domains in a MnSi nanowire (NW) using Lorentz transmission electron microscopy (LTEM). The MnSi NW was thinned to a rectangular cross-section by focused-ion beam milling to reduce obstructive Fresnel fringes. Helimagnetic domains, imaged as alternating bright and dark contrast stripes with an 18 nm period, were observed to be the spontaneous magnetic ground state at 6 K, while the hexagonal skyrmion lattice (SkX) with a domain diameter of 18 nm was observed under a normal magnetic field of 210 mT. Temperature-dependent measurements reveal that the SkX is stable over a larger range in this NW system (6-35 K) compared to the narrow temperature regime of skyrmion phase in bulk MnSi (26-30 K) and thin films of MnSi (5-23 K).

Journal ArticleDOI
TL;DR: In this article, the authors used the second-order phase transition theory of second order phase transition (SOPT) to estimate the Curie point temperatures of natural and synthetic magnetic materials.
Abstract: [1] Curie point temperatures (TC) of natural and synthetic magnetic materials are commonly determined in rock magnetism by several measurement methods that can be mutually incompatible and may lead to inconsistent results. Here the common evaluation routines for high-temperature magnetization and magnetic initial susceptibility curves are analyzed and revised based on Landau's theory of second-order phase transitions. It is confirmed that in high-field magnetization curves TC corresponds to the inflection point, below the temperature of maximum curvature or the double-tangent intersection point. At least four different physical processes contribute to the initial magnetic susceptibility near the ordering temperature. They include variation of saturation magnetization, superparamagnetic behavior, magnetization rotation, and magnetic domain wall motion. Because each of these processes may influence the apparent position of TC, initial susceptibility and high-field curves can yield deviating estimates of TC. A new procedure is proposed to efficiently determine the temperature variation of several magnetic parameters on a vibrating-sample magnetometer, by repeatedly measuring quarter-hysteresis loops during a single heating cycle. This procedure takes measurements during the inevitable waiting time necessary for thermal equilibration of the sample, whereby it is not slower than the commonly performed measurements on a Curie balance. However, it returns saturation magnetization, saturation remanence, high-field and low-field slopes, and other parameters as a function of temperature, which provide independent information about TC and other sample properties.

Journal ArticleDOI
TL;DR: The magnetic structure of the chemically-disordered face-centred-cubic alloy for the first time is determined, which differs from theoretical predictions, with magnetic moments tilted away from the crystal diagonals towards the face-planes.
Abstract: We have determined the magnetic structures of single-crystal thin-films of IrMn3 for the crystallographic phases of chemically-ordered L12, and for chemically-disordered face-centred-cubic, which is the phase typically chosen for information-storage devices. For the chemically-ordered L12 thin-film, we find the same triangular magnetic structure as reported for the bulk material. We determine the magnetic structure of the chemically-disordered face-centred-cubic alloy for the first time, which differs from theoretical predictions, with magnetic moments tilted away from the crystal diagonals towards the face-planes. We study the influence of these two antiferromagnetic structures on the exchange-bias properties of an epitaxial body-centred-cubic Fe layer showing that magnetization reversal mechanism and bias-field in the ferromagnetic layer is altered significantly. We report a change of reversal mechanism from in-plane nucleation of 90° domain-walls when coupled to the newly reported cubic structure towards a rotational process, including an out-of-plane magnetization component when coupled to the L12 triangular structure.

Journal ArticleDOI
TL;DR: In this article, the second-order magnetic transition from ferromagnetic to paramagnetic states at the Curie temperature was investigated, which is quite close to the liquid hydrogen temperature (20.3 K).
Abstract: Magnetic properties and magnetocaloric effects (MCEs) of ternary intermetallic ErFeSi compound have been investigated in detail. It is found that ErFeSi exhibits a second-order magnetic transition from ferromagnetic to paramagnetic states at the Curie temperature TC = 22 K, which is quite close to the liquid hydrogen temperature (20.3 K). A thermomagnetic irreversibility between zero-field-cooling and field-cooling curves is observed below TC in low magnetic field, and it is attributed to the narrow domain wall pinning effect. For a magnetic field change of 5 T, the maximum values of magnetic entropy change (−ΔSM) and adiabatic temperature change (ΔTad) are 23.1 J/kg K and 5.7 K, respectively. Particularly, the values of −ΔSM and refrigerant capacity reach as high as 14.2 J/kg K and 130 J/kg under a magnetic field change of 2 T, respectively. The large MCE without hysteresis loss for relatively low magnetic field change suggests that ErFeSi compound could be a promising material for magnetic refrigeration...

Journal ArticleDOI
TL;DR: In this paper, the magnetic properties and their temperature dependencies of Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline particles with ball milling method were studied.
Abstract: Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline particles BaFe12−2xCoxTixO19 with (0≤x≤1) and BaFe12−2xRuxTixO19 with (0≤x≤0.6) were prepared by ball milling method, and their magnetic properties and their temperature dependencies were studied. The zero-field-cooled (ZFC) and field-cooled (FC) processes were recorded at low magnetic fields and the ZFC curves displayed a broad peak at a temperature TM. In all samples under investigation, a clear irreversibility between the ZFC and FC curves was observed below room temperature, and this irreversibility disappeared above room temperature. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showed some kind of a transition from insulator to perfect insulator around TM. At 2 K, the saturation magnetization slightly decreased and the coercivity dropped dramatically with increasing the Co-Ti concentration x. With Ru-Ti substitution, the saturation...

Journal ArticleDOI
TL;DR: In this paper, the magnetization switching of a thin ferromagnetic layer placed on top of a heavy metal driven by an in-plane current has been observed in recent experiments.
Abstract: The magnetization switching of a thin ferromagnetic layer placed on top of a heavy metal (such as Pt, Ta, or W) driven by an in-plane current has been observed in recent experiments. The magnetization dynamics of these processes is studied in a full micromagnetic framework which takes into account the transfer-torque from spin Hall effect due to the spin-orbit coupling. Simulations indicate that the reversal occurs via nucleation of complex magnetization patterns. In particular, magnetic bubbles appear during the reversal of the magnetization in the perpendicular configuration while for the in-plane configuration, nucleation of vortexes is observed.

Journal ArticleDOI
TL;DR: In this article, the role of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction in the current-induced domain wall motion along a thin cobalt ferromagnetic strip sandwiched in a multilayer (Pt/Co/AlO) was theoretically studied.
Abstract: The current-induced domain wall motion along a thin cobalt ferromagnetic strip sandwiched in a multilayer (Pt/Co/AlO) is theoretically studied with emphasis on the roles of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction. The results point out that these ingredients, originated from the spin-orbit coupling, are consistent with recent experimental observations in three different scenarios. With the aim of clarifying which is the most plausible the influence of in-plane longitudinal and transversal fields is evaluated.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the thermal Hall effects in two-dimensional insulating magnets in which the magnetic texture is caused by spin-orbit interaction and found that thermal Hall effect can occur in certain domain walls as well as the skyrmion lattice.
Abstract: Magnetic excitations in ferromagnetic systems with a noncollinear ground-state magnetization experience a fictitious magnetic field due to the equilibrium magnetic texture. Here, we investigate how such fictitious fields lead to thermal Hall effects in two-dimensional insulating magnets in which the magnetic texture is caused by spin-orbit interaction. Besides the well-known geometric texture contribution to the fictitious magnetic field in such systems, there exists also an equally important contribution due to the original spin-orbit term in the free energy. We consider the different possible ground states in the phase diagram of a two-dimensional ferromagnet with spin-orbit interaction: the spiral state and the skyrmion lattice, and find that thermal Hall effects can occur in certain domain walls as well as the skyrmion lattice.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the domain-wall dynamics in Ta-CoFeB-MgO ultra-thin films with perpendicular magnetic anisotropy for various Co and Fe concentrations in both the amorphous and crystalline states.
Abstract: We have studied the domain-wall dynamics in Ta-CoFeB-MgO ultra-thin films with perpendicular magnetic anisotropy for various Co and Fe concentrations in both the amorphous and crystalline states. We observe three motion regimes with increasing magnetic field, which are consistent with a low fields creep, transitory depinning, and high fields Walker wall motion. The depinning fields are found to be as low as 2 mT, which is significantly lower than the values typically observed in 3d ferromagnetic metal films with perpendicular magnetic anisotropy. This work highlights a path toward advanced spintronics devices based on weak random pinning in perpendicular CoFeB films.

Journal ArticleDOI
TL;DR: In this paper, the magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization.
Abstract: Magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization. X-ray diffraction, transmission electron microscopy, magnetization and microwave absorption measurements were comparatively analyzed. The shape of the MNPs (mean diameter of 9 nm) was very close to being spherical. The lattice constant of the crystalline phase was substantially smaller than that of stoichiometric magnetite but larger than the lattice constant of maghemite. High value of M s up to 300 K was established. The 300 K ferromagnetic resonance signal is a single line located at a field expected from spherical magnetic particles with negligible magnetic anisotropy. The maximum obtained concentration of water based ferrofluid was as high as 10g/l of magnetic material. In order to understand the temperature and field dependence of MNPs magnetization, we invoke the core-shell model. The nanoparticles is said to have a ferrimagnetic core (roughly 70 percent of the caliper size) while the shell consists of surface layers in which the spins are frozen having no long range magnetic order. The core-shell interactions were estimated in frame of random anisotropy model. The obtained assembly of de-aggregated nanoparticles is an example of magnetic nanofluid stable under ambient conditions even without an electrostatic stabilizer.

Journal ArticleDOI
TL;DR: It is observed that the Ni80Fe20 nanowires with modulated diameters reverse their magnetization via the nucleation and propagation of a vortex domain wall, and the interaction field is stronger in the case of constant volume segments.
Abstract: Magnetic properties of cylindrical Ni80Fe20 nanowires with modulated diameters are investigated theoretically as a function of their geometrical parameters and compared with those produced inside the pores of anodic alumina membranes by pulsed electrodeposition. We observe that the Ni80Fe20 nanowires with modulated diameters reverse their magnetization via the nucleation and propagation of a vortex domain wall. The system begins generating vortex domains in the nanowire ends and in the transition region between the two segments to minimize magnetostatic energy generated by surfaces perpendicular to the initial magnetization of the sample. Besides, we observed an increase of the coercivity for the sample with equal volumes in relation to the sample with equal lengths. Finally, the interaction field is stronger in the case of constant volume segments. These structures could be used to control the motions of magnetic domain walls. In this way, these nanowires with modulated diameters can be an alternative to store information or even perform logic functions.

Patent
14 Oct 2013
TL;DR: In this article, a magnetic device includes a pinned magnetic layer having a fixed magnetization vector with a first fixed magnetisation direction, and a free magnetic layer with variable magnetization vectors having at least a first stable state and a second stable state.
Abstract: A magnetic device includes a pinned magnetic layer having a first fixed magnetization vector with a first fixed magnetization direction. The magnetic device also includes a free magnetic layer having a variable magnetization vector having at least a first stable state and a second stable state. The magnetic device also has a first non-magnetic layer and a reference. The first non-magnetic layer spatially separates the pinned magnetic layer and the free magnetic layer. The magnetic device also includes a second non-magnetic layer spatially separating the free magnetic layer and the reference magnetic layer. A magnetic tunnel junction, located below the pinned magnetic layer, is formed by the free magnetic layer, the second non-magnetic layer, and the reference magnetic layer. Application of a current pulse, having either positive or negative polarity and a selected amplitude and duration, through the magnetic device switches the variable magnetization vector.

Journal ArticleDOI
TL;DR: In this paper, the authors explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots and find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits.
Abstract: We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect (QAHE). Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits.

Journal ArticleDOI
TL;DR: A characterization of the magnetic properties of amorphous Co40Fe40B20 thin films, developed for low damping applications in magnon spintronics, using vector network analyzer ferromagnetic resonance (VNA-FMR) and the magneto-optical Kerr effect is presented in this paper.
Abstract: A characterization of the magnetic properties of amorphous Co40Fe40B20 thin films, developed for low damping applications in magnon spintronics, using vector network analyzer ferromagnetic resonance (VNA-FMR) and the magneto-optical Kerr effect is presented Our films show a very weak uniaxial anisotropy and a low Gilbert damping parameter (α=00042) The saturation magnetization MS extracted from the FMR measurements is 1250 kA/m The frequency dependence of the first perpendicular standing spin waves mode on the applied magnetic field is used to determine the exchange constant A for this alloy resulting in a value of 15×10−11 J/m These values are discussed in comparison to literature values for different CoFeB compositions and other related alloys

Journal ArticleDOI
TL;DR: In this article, the effect of the defects on magnetic properties of a bilayer Ising ferromagnetic antiferromagnetic model is studied by Monte Carlo simulations, for a nano-graphene lattice with spins that can take the values σ=3/2 and S=5/2.
Abstract: The effect of the defects on magnetic properties of a bilayer Ising ferromagnetic antiferromagnetic model is studied by Monte Carlo simulations, for a nano-graphene lattice with spins that can take the values σ=3/2 and S=5/2. We consider two ferromagnetic and antiferromagnetic bilayers with N=42 spins, with a random number of defects. We only consider the nearest-neighbor interactions between the site i and j on each layer. The effects of the defects on magnetization are investigated for fixed temperature, crystal field, and magnetic field values. The thermal dependency of each layer magnetization is calculated for fixed defect rate values K 3 and K 5, the crystal field, and external magnetic field. The magnetization hysteresis loops for several rate defects are also investigated as a function of the external magnetic field.

Journal ArticleDOI
TL;DR: The first observation of skyrmion-like magnetic nanodomains in a ferromagnetic manganite, La 0.5Ba0.5MnO3, is reported using Lorentz transmission electron microscopy (LTEM), and it is found that the repeated reversal of magnetic chirality is caused by thermal fluctuation.
Abstract: Direct observation of skyrmion-like excitations by Lorentz microscopy is reported for the first time in a ferromagnetic manganite.

Journal ArticleDOI
TL;DR: In this article, the magnetic field dependent magnetoresistance (MR) curve exhibits two distinct regions: the low-field MR which shows a rapid increase in an applied field within 200 Oe and the high-fieldMR which showed a relatively slow increase with the field increasing (more than 200
Abstract: Near room-temperature magnetoresistance (MR) effect in ferromagnetic semiconductor La2NiMnO6 has been reported. The magnetic field dependent MR curve exhibits two distinct regions: the low-field MR which shows a rapid increase in an applied field within 200 Oe and the high-field MR which shows a relatively slow increase with the field increasing (more than 200 Oe). Based on the analyses of magnetic and electronic properties, we suggest that the low-field MR comes from the increased electron tunneling probability accompanied by the alignment of ferromagnetic domains under external field and the high-field MR is due to the suppression of scattering from the spin defects arising from the Ni/Mn antisite disorders.

Journal ArticleDOI
TL;DR: The rotation direction of the magnetization in all magnetic domains, determined by diffraction of circularly polarized light, was found to be unique and in agreement with predictions of a combined approach based on a spin-model complemented by relativistic density-functional simulations.
Abstract: Magnetic domains at the surface of a ferroelectric monodomain ${\mathrm{BiFeO}}_{3}$ single crystal have been imaged by hard x-ray magnetic scattering. Magnetic domains up to several hundred microns in size have been observed, corresponding to cycloidal modulations of the magnetization along the wave vector $\mathbit{k}=(\ensuremath{\delta},\ensuremath{\delta},0)$ and symmetry equivalent directions. The rotation direction of the magnetization in all magnetic domains, determined by diffraction of circularly polarized light, was found to be unique and in agreement with predictions of a combined approach based on a spin-model complemented by relativistic density-functional simulations. Imaging of the surface shows that the largest adjacent domains display a 120\ifmmode^\circ\else\textdegree\fi{} vortex structure.