scispace - formally typeset
Search or ask a question

Showing papers on "Metabolite published in 2007"


Journal ArticleDOI
Eva M. Lenz1, Ian D. Wilson1
TL;DR: The utility of various analytical techniques for global metabolite profiling, such as, e.g., 1H NMR, MS, HPLC-MS, and GC-MS are explored and compared.
Abstract: To perform metabonomics investigations, it is necessary to generate comprehensive metabolite profiles for complex samples such as biofluids and tissue/tissue extracts. Analytical technologies that can be used to achieve this aim are constantly evolving, and new developments are changing the way in which such profiles' metabolite profiles can be generated. Here, the utility of various analytical techniques for global metabolite profiling, such as, e.g., 1H NMR, MS, HPLC-MS, and GC-MS, are explored and compared.

507 citations


Journal ArticleDOI
TL;DR: In this paper, a wide view of the role of transcriptome to biochemical changes that occur during cold acclimation was performed revealing the dynamics of selected gene-metabolite relationships.
Abstract: Exposure of Arabidopsis to low temperatures results in cold acclimation where freezing tolerance is enhanced. To achieve a wider view of the role of transcriptome to biochemical changes that occur during cold acclimation, analyses of concurrent transcript and metabolite changes during cold acclimation was performed revealing the dynamics of selected gene-metabolite relationships. Exposure to low temperature resulted in broad transcriptional and metabolite responses. Principal component analysis revealed sequentially progressive, global changes in both gene expression and metabolite profiles during cold acclimation. Changes in transcript abundance for many metabolic processes, including protein amino acid biosynthetic pathways and soluble carbohydrates, during cold acclimation were observed. For some metabolic processes, changes in transcript abundance temporally correlated with changes in metabolite levels. For other metabolic processes, changes in transcript levels were not correlated with changes in metabolite levels. The present findings demonstrate that regulatory processes independent of transcript abundance represent a key part of the metabolic adjustments that occur during cold acclimation.

398 citations


Journal ArticleDOI
TL;DR: Sperm DNA damage was associated with MEP and with MEHP after adjusting for DEHP oxidative metabolites, which may serve as phenotypic markers of DEHP metabolism to 'less toxic' metabolites.
Abstract: BACKGROUND: The ubiquitous use of phthalate esters in plastics, personal care products and food packaging materials results in widespread general population exposure. In this report, we extend our preliminary study on the relationship between urinary concentrations of phthalate metabolites and sperm DNA damage among a larger sample of men and include measurements of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), two oxidative metabolites of di-(2-ethylhexyl) phthalate (DEHP). METHODS: Among 379 men from an infertility clinic, urinary concentrations of phthalate metabolites were measured using isotope-dilution highperformance liquid chromatography–tandem mass spectrometry. Sperm DNA damage measurements, assessed with the neutral comet assay, included comet extent (CE), percentage of DNA in tail (Tail%) and tail distributed moment (TDM). RESULTS: Monoethyl phthalate (MEP), a metabolite of diethyl phthalate, was associated with increased DNA damage, confirming our previous findings. Mono-(2-ethylhexyl) phthalate (MEHP), a metabolite of DEHP, was associated with DNA damage after adjustment for the oxidative DEHP metabolites. After adjustment for MEHHP, for an interquartile range increase in urinary MEHP, CE increased 17.3% [95% confidence interval (CI) = 8.7–25.7%], TDM increased 14.3% (95% CI = 6.8–21.7%) and Tail% increased 17.5% (95% CI = 3.5–31.5%). CONCLUSIONS: Sperm DNA damage was associated with MEP and with MEHP after adjusting for DEHP oxidative metabolites, which may serve as phenotypic markers of DEHP metabolism to ‘less toxic’ metabolites. The urinary levels of phthalate metabolites among these men were similar to those reported for the US general population, suggesting that exposure to some phthalates may affect the population distribution of sperm DNA damage.

381 citations


Journal ArticleDOI
TL;DR: Comparison of metabolite levels in the culture supernatant and the cell interior revealed that the common assumption of whole broth quenching protocols attributing the metabolites found exclusively to the intracellular pools may not be valid in many cases.
Abstract: In the present work we investigated the most commonly applied methods used for sampling of microorganisms in the field of metabolomics in order to unravel potential sources of error previously ignored but of utmost importance for accurate metabolome analysis. To broaden the significance of our study, we investigated different Gram-negative and Gram-positive bacteria, i.e., Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli, Gluconobacter oxydans, Pseudomonas putida, and Zymononas mobilis, and analyzed metabolites from different catabolic and anabolic intracellular pathways. Quenching of cells with cold methanol prior to cell separation and extraction led to drastic loss (>60%) of all metabolites tested due to unspecific leakage. Using fast filtration, Gram-negative bacteria also revealed a significant loss (>80%) when inappropriate washing solutions with low ionic strength were applied. Adapting the ionic strength of the washing solution to that of the cultivation medium could almost completely avoid this problem. Gram-positive strains did not show significant leakage independent of the washing solution. Fast filtration with sampling times of several seconds prior to extraction appears to be a suitable approach for metabolites with relatively high intracellular level and low turnover such as amino acids or TCA cycle intermediates. Comparison of metabolite levels in the culture supernatant and the cell interior revealed that the common assumption of whole broth quenching protocols attributing the metabolites found exclusively to the intracellular pools may not be valid in many cases. In such cases a differential approach correcting for medium-contained metabolites is required.

370 citations


Journal ArticleDOI
TL;DR: The pathological consequences of the presence of excessive concentrations of These compounds are related to the short- and, most important, long-term effects of these compounds on the rapid colonic epithelium renewing and homeostasis.
Abstract: Depending on the amount of alimentary proteins, between 6 and 18 g nitrogenous material per day enter the large intestine lumen through the ileocaecal junction. This material is used as substrates by the flora resulting eventually in the presence of a complex mixture of metabolites including ammonia, hydrogen sulfide, short and branched-chain fatty acids, amines; phenolic, indolic and N-nitroso compounds. The beneficial versus deleterious effects of these compounds on the colonic epithelium depend on parameters such as their luminal concentrations, the duration of the colonic stasis, the detoxication capacity of epithelial cells in response to increase of metabolite concentrations, the cellular metabolic utilization of these metabolites as well as their effects on colonocyte intermediary and oxidative metabolism. Furthermore, the effects of metabolites on electrolyte movements through the colonic epithelium must as well be taken into consideration for such an evaluation. The situation is further complicated by the fact that other non-nitrogenous compounds are believed to interfere with these various phenomenons. Finally, the pathological consequences of the presence of excessive concentrations of these compounds are related to the short- and, most important, long-term effects of these compounds on the rapid colonic epithelium renewing and homeostasis.

350 citations


Journal ArticleDOI
TL;DR: Experiments involving isotopic tracers revealed that the improved triph phosphate yields in the acidic acetonitrile were in part due to reduced triphosphate decomposition, which is a major problem when extracting with other solvent systems such as methanol/water.
Abstract: Cellular metabolome analysis by chromatography-mass spectrometry (MS) requires prior metabolite extraction. We examined a diversity of solvent systems for extraction of water-soluble metabolites from Escherichia coli. Quantitative yields of approximately 100 different metabolites were measured by liquid chromatography-tandem MS and displayed in clustered heat map format. Many metabolites, including most amino acids and components of central carbon metabolism, were adequately extracted by a broad spectrum of solvent mixtures. For nucleotide triphosphates, however, mixtures of acidic (0.1 M formic acid-containing) acetonitrile/water (80:20) or acetonitrile/methanol/water (40:40:20) gave superior triphosphate yields. Experiments involving isotopic tracers revealed that the improved triphosphate yields in the acidic acetonitrile were in part due to reduced triphosphate decomposition, which is a major problem when extracting with other solvent systems such as methanol/water. We recommend acidic solvent mixtures containing acetonitrile for extraction of the E. coli metabolome.

318 citations


Journal ArticleDOI
TL;DR: These results conform to a model of selection-driven pathway fixation occurring subsequent to gene acquisition and provide a rare example in which demonstrable physiological traits have been correlated to the fine-scale phylogenetic architecture of an environmental bacterial community.
Abstract: Here we report associations between secondary metabolite production and phylogenetically distinct but closely related marine actinomycete species belonging to the genus Salinispora. The pattern emerged in a study that included global collection sites, and it indicates that secondary metabolite production can be a species-specific, phenotypic trait associated with broadly distributed bacterial populations. Associations between actinomycete phylotype and chemotype revealed an effective, diversity-based approach to natural product discovery that contradicts the conventional wisdom that secondary metabolite production is strain specific. The structural diversity of the metabolites observed, coupled with gene probing and phylogenetic analyses, implicates lateral gene transfer as a source of the biosynthetic genes responsible for compound production. These results conform to a model of selection-driven pathway fixation occurring subsequent to gene acquisition and provide a rare example in which demonstrable physiological traits have been correlated to the fine-scale phylogenetic architecture of an environmental bacterial community.

308 citations


Journal ArticleDOI
TL;DR: The whole metabolism of ETs is shown for the first time, confirming previous studies in humans and explaining the long persistency of urolithin metabolites in the body mediated by an active enterohepatic circulation.
Abstract: Ellagitannin-containing foods (strawberries, walnuts, pomegranate, raspberries, oak-aged wine, etc.) have attracted attention due to their cancer chemopreventive, cardioprotective, and antioxidant effects. Ellagitannins (ETs) are not absorbed as such but are metabolized by the intestinal flora to yield urolithins (hydroxydibenzopyran-6-one derivatives). In this study, Iberian pig is used as a model to clarify human ET metabolism. Pigs were fed either cereal fodder or acorns, a rich source of ETs. Plasma, urine, bile, lumen and intestinal tissues (jejunum and colon), feces, liver, kidney, heart, brain, lung, muscle, and subcutaneous fat tissue were analyzed. The results demonstrate that acorn ETs release ellagic acid (EA) in the jejunum, then the intestinal flora metabolizes EA sequentially to yield tetrahydroxy- (urolithin D), trihydroxy- (urolithin C), dihydroxy- (urolithin A), and monohydroxy- (urolithin B) dibenzopyran-6-one metabolites, which were absorbed preferentially when their lipophilicity increased. Thirty-one ET-derived metabolites were detected, including 25 urolithin and 6 EA derivatives. Twenty-six extensively conjugated metabolites were detected in bile, glucuronides and methyl glucuronides of EA and particularly urolithin A, C, and D derivatives, confirming a very active enterohepatic circulation. Urolithins A and B as well as dimethyl-EA-glucuronide were detected in peripheral plasma. The presence of EA metabolites in bile and in urine and its absence in intestinal tissues suggested its absorption in the stomach. Urolithin A was the only metabolite detected in feces and together with its glucuronide was the most abundant metabolite in urine. No metabolites accumulated in any organ analyzed. The whole metabolism of ETs is shown for the first time, confirming previous studies in humans and explaining the long persistency of urolithin metabolites in the body mediated by an active enterohepatic circulation.

295 citations


Journal ArticleDOI
TL;DR: In this article, a review describes sample preparation and introduction strategies to minimize ion suppression by biological matrices for metabolite identification studies, the application of various LC-tandem MS (LC-MS/MS) techniques for the rapid quantification and identification of drug metabolites, and future trends in this field.
Abstract: With the dramatic increase in the number of new chemical entities (NCEs) arising from combinatorial chemistry and modern high-throughput bioassays, novel bioanalytical techniques are required for the rapid determination of the metabolic stability and metabolites of these NCEs. Knowledge of the metabolic site(s) of the NCEs in early drug discovery is essential for selecting compounds with favorable pharmacokinetic credentials and aiding medicinal chemists in modifying metabolic "soft spots". In development, elucidation of biotransformation pathways of a drug candidate by identifying its circulatory and excretory metabolites is vitally important to understand its physiological effects. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have played an invaluable role in the structural characterization and quantification of drug metabolites. Indeed, liquid chromatography (LC) coupled with atmospheric pressure ionization (API) MS has now become the most powerful tool for the rapid detection, structure elucidation, and quantification of drug-derived material within various biological fluids. Often, however, MS alone is insufficient to identify the exact position of oxidation, to differentiate isomers, or to provide the precise structure of unusual and/or unstable metabolites. In addition, an excess of endogenous material in biological samples often suppress the ionization of drug-related material complicating metabolite identification by MS. In these cases, multiple analytical and wet chemistry techniques, such as LC-NMR, enzymatic hydrolysis, chemical derivatization, and hydrogen/deuterium-exchange (H/D-exchange) combined with MS are used to characterize the novel and isomeric metabolites of drug candidates. This review describes sample preparation and introduction strategies to minimize ion suppression by biological matrices for metabolite identification studies, the application of various LC-tandem MS (LC-MS/MS) techniques for the rapid quantification and identification of drug metabolites, and future trends in this field.

280 citations


Journal ArticleDOI
TL;DR: The chemopreventive potential of pomegranate ETs and localization of their bioactive metabolites in mouse prostate tissue suggest that pomesgranate may play a role in CaP treatment andChemoprevention.
Abstract: Our group has shown in a phase II clinical trial that pomegranate juice (PJ) increases prostate specific antigen (PSA) doubling time in prostate cancer (CaP) patients with a rising PSA. Ellagitannins (ETs) are the most abundant polyphenols present in PJ and contribute greatly towards its reported biological properties. On consumption, ETs hydrolyze to release ellagic acid (EA), which is then converted by gut microflora to 3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one (urolithin A, UA) derivatives. Despite the accumulating knowledge of ET metabolism in animals and humans, there is no available data on the pharmacokinetics and tissue disposition of urolithins. Using a standardized ET-enriched pomegranate extract (PE), we sought to further define the metabolism and tissue distribution of ET metabolites. PE and UA (synthesized in our laboratory) were administered to C57BL/6 wild-type male mice, and metabolite levels in plasma and tissues were determined over 24 h. ET metabolites were concentrated at higher levels in mouse prostate, colon, and intestinal tissues as compared to other tissues after administration of PE or UA. We also evaluated the effects of PE on CaP growth in severe combined immunodeficient (SCID) mice injected subcutaneously with human CaP cells (LAPC-4). PE significantly inhibited LAPC-4 xenograft growth in SCID mice as compared to vehicle control. Finally, EA and several synthesized urolithins were shown to inhibit the growth of human CaP cells in vitro. The chemopreventive potential of pomegranate ETs and localization of their bioactive metabolites in mouse prostate tissue suggest that pomegranate may play a role in CaP treatment and chemoprevention. This warrants future human tissue bioavailability studies and further clinical studies in men with CaP.

278 citations


Journal ArticleDOI
TL;DR: Observed changes in metabolite levels were spread over time and space and were crucial in improving net assimilation and heat tolerance of sugarcane.
Abstract: Global increase in ambient temperature is a critical factor for plant growth. In order to study the changes in growth over short intervals, various primary and secondary metabolites, and their relationships with thermotolerance, 1-month-old sugarcane (Saccharum officinarum) sprouts were grown under control conditions (28 degrees C) or under heat-stress conditions (40 degrees C), and measurements were made at six 12-h intervals. Heat stress greatly reduced dry matter and leaf area of sprouts initially but only nominally later on. Changes in the rates of relative growth and net assimilation were greater than relative leaf expansion, indicating an adverse effect of heat on assimilation of nutrients and CO(2) in producing dry matter. Although reduction in leaf water potential was an immediate response to heat, this effect was offset by early synthesis of free proline, glycinebetaine and soluble sugars (primary metabolites). Among secondary metabolites, anthocyanin synthesis was similar to primary metabolites; carotenoids and soluble phenolics accumulated later while chlorophyll remained unaffected. Relationships of growth attributes and metabolite levels, not seen in the controls, were evident under heat stress. In summary, observed changes in metabolite levels were spread over time and space and were crucial in improving net assimilation and heat tolerance of sugarcane.

Journal ArticleDOI
TL;DR: A time-course metabolic profiling with Arabidopsis thaliana cell cultures after the imposition of salt stress is reported, and mining results suggest the methylation cycle for the supply of methyl groups, the phenylpropanoid pathway for lignin production, and glycinebetaine biosynthesis are synergetically induced as a short-term response against salt-stress treatment.
Abstract: Salt stress is one of the most important factors limiting plant cultivation. Many investigations of plant response to high salinity have been performed using conventional transcriptomics and/or proteomics approaches. However, transcriptomics and proteomics techniques are not all-encompassing methods that can achieve exclusive insights into the metabolite networks contributing to biochemical reactions. Hence, the functions of the complex stress response pathways are yet to be determined, especially at the metabolic level. A time-course metabolic profiling with Arabidopsis thaliana cell cultures after the imposition of salt stress is reported in this study. Analyses of primary metabolites, especially small polar metabolites such as amino acids, sugars, sugar alcohols, organic acids, and amines, was performed by GC/MS and LC/MS at 0.5, 1, 2, 4, 12, 24, 48, and 72 h after a salt-stress treatment with 100 mM NaCl being the final concentration. The mass chromatographic data were converted into matrix data sets, which were subjected to data mining processes, including principal component analysis (PCA) and batch-learning self-organizing mapping analysis (BL-SOM). The mining results suggest that the methylation cycle for the supply of methyl groups, the phenylpropanoid pathway for lignin production, and glycinebetaine biosynthesis are synergetically induced as a short-term response against salt-stress treatment. The results also suggest the the co-induction of glycolysis and sucrose metabolism as well as co-reduction of the methylation cycle as long-term responses to salt stress.

Journal ArticleDOI
TL;DR: This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3, 4-Dihydroxybutyric aciduria with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.
Abstract: Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+-dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjogren-Larsson syndrome, type II hyperprolinemia, γ-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.

Journal ArticleDOI
TL;DR: Support is provided that vitamin D plays an immunomodulatory role in inflammatory arthritis and the clinical response to vitamin D supplementation should be examined in patients with early inflammatory polyarthritis.
Abstract: Objective Previous in vitro and animal studies have suggested that vitamin D, in particular, its metabolite 25-hydroxyvitamin D (25[OH]D), may have immunomodulatory effects. To study further the potential immunomodulatory effects of vitamin D in humans, we explored the hypothesis that serum vitamin D metabolites may be inversely associated with current disease activity, severity, and functional disability in patients with early inflammatory polyarthritis (IP). Methods We studied 206 consecutive patients with IP who were enrolled in the Norfolk Arthritis Register between January 2000 and November 2003 inclusive. Patients were studied within 6 months of symptom onset. None of the patients was taking steroids, and all had received <6 weeks of disease-modifying therapy. Associations between serum levels of 25(OH)D and 1,25-dihydroxyvitamin D (1,25[OH]2D) at baseline and the swollen and tender joint counts, Health Assessment Questionnaire (HAQ) scores, C-reactive protein (CRP) levels, and the Disease Activity Score 28-joint assessment (DAS28) scores at baseline and 1 year were assessed. Results The median age at symptom onset was 59 years (range 20–88 years), with a median disease duration of 4 months. At baseline, there was an inverse relationship between 25(OH)D levels and the tender joint count, DAS28 score, and HAQ score. The only inverse relationship with 1,25(OH)2D was with the HAQ score. Each 10-ng/ml increase in the level of 25(OH)D was associated with a decrease in the DAS28 score of 0.3 and in the CRP level of ∼25%. At 1 year, the only significant result was an inverse association between baseline vitamin D metabolite levels and the HAQ score; that is, those with higher metabolite levels had lower HAQ scores. Conclusion These data provide further support that vitamin D plays an immunomodulatory role in inflammatory arthritis. This association needs to be examined in other cohorts of patients with early IP, as well as in longitudinal studies. If confirmed, the clinical response to vitamin D supplementation should be examined in early IP.

Journal ArticleDOI
TL;DR: High-resolution chromatography and high-resolution mass spectrometry together with data processing using mass defect filtering is described for in vitro and in vivo metabolite identification studies, greatly enhancing the discovery of metabolites.
Abstract: Metabolite identification studies involve the detection and structural characterization of the biotransformation products of drug candidates. These experiments are necessary throughout the drug discovery and development process. The use of high-resolution chromatography and high-resolution mass spectrometry together with data processing using mass defect filtering is described for in vitro and in vivo metabolite identification studies. Data collection was done using UPLC coupled with an orthogonal hybrid quadrupole time-of-flight mass spectrometer. This experimental approach enabled the use of MS(E) data collection (where E represents collision energy) which has previously been shown to be a powerful approach for metabolite identification studies. Post-acquisition processing with a prototype mass defect filtering program was used to eliminate endogenous interferences in the study samples, greatly enhancing the discovery of metabolites. The ease of this approach is illustrated by results showing the detection and structural characterization of metabolites in plasma from a preclinical rat pharmacokinetic study.

Journal ArticleDOI
TL;DR: A sensitive, specific, accurate, and precise high-performance liquid chromatography-tandem mass spectrometry method utilizing selected reaction monitoring for measuring the absolute quantities of endogenous estrogens and estrogen metabolites in human serum from premenopausal and postmenopausal women is detailed.
Abstract: Endogenous estrogen plays a key role in the development of human breast cancer, yet the contribution of specific estrogen metabolites and patterns of estrogen metabolism remains unclear. To determi...

Journal ArticleDOI
TL;DR: Principal component analysis demonstrated that rapid cold-hardening and diapause are metabolically distinct from their untreated, non-diapausing counterparts.
Abstract: Flesh flies can enhance their cold hardiness by entering a photoperiod-induced pupal diapause or by a temperature-induced rapid cold-hardening process. To determine whether the same or different metabolites are involved in these two responses, derivatized polar extracts from flesh flies subjected to these treatments were examined using gas chromatography–mass spectrophotometry (GC–MS). This metabolomic approach demonstrated that levels of metabolites involved in glycolysis (glycerol, glucose, alanine, pyruvate) were elevated by both treatments. Metabolites elevated uniquely in response to rapid cold-hardening include glutamine, cystathionine, sorbitol, and urea while levels of β-alanine, ornithine, trehalose, and mannose levels were reduced. Rapid cold-hardening also uniquely perturbed the urea cycle. In addition to the elevated metabolites shared with rapid cold-hardening, leucine concentrations were uniquely elevated during diapause while levels of a number of other amino acids were reduced. Pools of two aerobic metabolic intermediates, fumarate and citrate, were reduced during diapause, indicating a reduction of Krebs cycle activity. Principal component analysis demonstrated that rapid cold-hardening and diapause are metabolically distinct from their untreated, non-diapausing counterparts. We discuss the possible contribution of each altered metabolite in enhancing the overall cold hardiness of the organism, as well as the efficacy of GC–MS metabolomics for investigating insect physiological systems.

Journal ArticleDOI
TL;DR: The importance of caffeine metabolites and colonic metabolites in the overall antioxidant activity associated with coffee consumption is shown and 2,2'-azobis(2-amidinopropane) dihydrochloride was particularly effective at inhibiting LDL oxidative modification.
Abstract: In this paper we report the antioxidant activity of different compounds which are present in coffee or are produced as a result of the metabolism of this beverage. In vitro methods such as the ABTS...

Journal ArticleDOI
TL;DR: A strategy for the development of an advanced analytical platform that allows the comprehensive analysis of microbial metabolomes and its application to the analysis of the metabolome composition of mid-logarithmic E. coli cells grown on a mineral salts medium using glucose as the carbon source is presented.

Journal ArticleDOI
TL;DR: The blood metabolome of rats treated with HPPD inhibitors, a novel class of herbicides, was analyzed and it was demonstrated that a single metabolite, tyrosine, can be used as a biomarker and a specific pattern of change was found that involved nine metabolites.

Journal ArticleDOI
TL;DR: Findings suggest spatio-temporal specificity in the accumulation of endogenous metabolites from tomato fruit, which could be assigned to specific ripening stages or tissues.
Abstract: Fruit maturation and tissue differentiation are important topics in plant physiology. These biological phenomena are accompanied by specific alterations in the biological system, such as differences in the type and concentration of metabolites. The secondary metabolism of tomato (Solanum lycopersicum) fruit was monitored by using liquid chromatography (LC) coupled to photo-diode array (PDA) detection, fluorescence detection (FD), and mass spectrometry (MS). Through this integrated approach different classes of compounds were analysed: carotenoids, xanthophylls, chlorophylls, tocopherols, ascorbic acid, flavonoids, phenolic acids, glycoalkaloids, saponins, and other glycosylated derivatives. Related metabolite profiles of peel and flesh were found between several commercial tomato cultivars indicating similar metabolite trends despite the genetic background. For a single tomato cultivar, metabolite profiles of different fruit tissues (vascular attachment region, columella and placenta, epidermis, pericarp, and jelly parenchyma) were examined at the green, breaker, turning, pink, and red stages of fruit development. Unrelated to the chemical nature of the metabolites, behavioural patterns could be assigned to specific ripening stages or tissues. These findings suggest spatio-temporal specificity in the accumulation of endogenous metabolites from tomato fruit.

Journal ArticleDOI
TL;DR: The neuronal integrity marker N-acetylaspartate/creatine ratio declined in MCI and AD patients compared to cognitively normal elderly, and the change in (1)H MRS metabolite ratios correlated with clinical progression about as strongly as the rate of ventricular expansion, suggesting that ( 1)H H MRS metabolites may be useful markers for the progression of AD.

Journal ArticleDOI
TL;DR: It is demonstrated that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles.
Abstract: Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis.

Journal ArticleDOI
TL;DR: A reversed-phase HPLC method that uses gradient elution and UV detection (325 nm) to determine levels of resveratrol and identify six major conjugated metabolites in the plasma and urine of human volunteers after administration of a single oral dose of 1g is described.

Journal ArticleDOI
TL;DR: The data demonstrated large inter and intra-individual variation in metabolite concentrations in both normal human and control animal populations, demonstrating a defined normal baseline is essential before any conclusions may be drawn regarding changes in urine metabolite concentration.
Abstract: Urine is often sampled from patients participating in clinical and metabolomic studies. Biological homeostasis occurs in humans, but little is known about the variability of metabolites found in urine. It is important to define the inter- and intra-individual metabolite variance within a normal population before scientific or clinical conclusions are made regarding different pathophysiologies. This study investigates the variability of selected urine metabolites in a group of 60 healthy men and women over a period of 30 days. To monitor individual variation, 6 women from the normal population were randomly selected and followed for 30 days. To determine the influence of extraneous environmental factors urine was collected from 25 guinea pigs with similar genetics, diet, and living environment. For both studies, 24 metabolites were identified and quantified using high-resolution 1H nuclear magnetic resonance spectroscopy (NMR). The data demonstrated large inter and intra-individual variation in metabolite concentrations in both normal human and control animal populations. A defined normal baseline is essential before any conclusions may be drawn regarding changes in urine metabolite concentrations.

Journal ArticleDOI
TL;DR: In this paper, the effects of Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) on the transcriptome and metabolome of tobacco were investigated.
Abstract: Lignin is an important component of secondarily thickened cell walls. Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) are two key enzymes that catalyse the penultimate and last steps in the biosynthesis of the monolignols. Downregulation of CCR in tobacco (Nicotiana tabacum) has been shown to reduce lignin content, whereas lignin in tobacco downregulated for CAD incorporates more aldehydes. We show that altering the expression of either or both genes in tobacco has far-reaching consequences on the transcriptome and metabolome. cDNA-amplified fragment length polymorphism-based transcript profiling, combined with HPLC and GC-MS-based metabolite profiling, revealed differential transcripts and metabolites within monolignol biosynthesis, as well as a substantial network of interactions between monolignol and other metabolic pathways. In general, in all transgenic lines, the phenylpropanoid biosynthetic pathway was downregulated, whereas starch mobilization was upregulated. CCR-downregulated lines were characterized by changes at the level of detoxification and carbohydrate metabolism, whereas the molecular phenotype of CAD-downregulated tobacco was enriched in transcript of light- and cell-wall-related genes. In addition, the transcript and metabolite data suggested photo-oxidative stress and increased photorespiration, mainly in the CCR-downregulated lines. These predicted effects on the photosynthetic apparatus were subsequently confirmed physiologically by fluorescence and gas-exchange measurements. Our data provide a molecular picture of a plant's response to altered monolignol biosynthesis.

Journal ArticleDOI
TL;DR: The metabolism and excretion of [14C]sitagliptin, an orally active, potent and selective dipeptidyl peptidase 4 inhibitor, were investigated in humans after a single oral dose of 83 mg/193 μCi, indicating that sitagli leptin was eliminated primarily by renal excretion.
Abstract: The metabolism and excretion of [(14)C]sitagliptin, an orally active, potent and selective dipeptidyl peptidase 4 inhibitor, were investigated in humans after a single oral dose of 83 mg/193 muCi. Urine, feces, and plasma were collected at regular intervals for up to 7 days. The primary route of excretion of radioactivity was via the kidneys, with a mean value of 87% of the administered dose recovered in urine. Mean fecal excretion was 13% of the administered dose. Parent drug was the major radioactive component in plasma, urine, and feces, with only 16% of the dose excreted as metabolites (13% in urine and 3% in feces), indicating that sitagliptin was eliminated primarily by renal excretion. Approximately 74% of plasma AUC of total radioactivity was accounted for by parent drug. Six metabolites were detected at trace levels, each representing <1 to 7% of the radioactivity in plasma. These metabolites were the N-sulfate and N-carbamoyl glucuronic acid conjugates of parent drug, a mixture of hydroxylated derivatives, an ether glucuronide of a hydroxylated metabolite, and two metabolites formed by oxidative desaturation of the piperazine ring followed by cyclization. These metabolites were detected also in urine, at low levels. Metabolite profiles in feces were similar to those in urine and plasma, except that the glucuronides were not detected in feces. CYP3A4 was the major cytochrome P450 isozyme responsible for the limited oxidative metabolism of sitagliptin, with some minor contribution from CYP2C8.

Journal ArticleDOI
TL;DR: The identification of nobiletin metabolites and their anti-inflammatory activity against LPS-induced NO production and iNOS, COX-2 protein expression in RAW264.7 macrophage is reported.

Journal ArticleDOI
TL;DR: The findings suggest that the majority of the children in the general population is exposed to quantities of DEHP below the TDI and the RfD, however, many children scoop out the preventive limit values to a considerable degree and in individual cases the authors observed substantial transgressions.

Journal ArticleDOI
TL;DR: An 1H NMR spectroscopy-based metabolomics approach was developed to establish a metabolic 'biomarker pattern' in a model of rheumatoid arthritis, the K/BxN transgenic mouse, and suggested a shift from metabolites involved in numerous reactions (hub-metabolites) toward intermediates and metabolic endpoints associated with arthritis.
Abstract: Rheumatoid arthritis, a debilitating, systemic inflammatory joint disease, is likely accompanied by alterations in circulating metabolites. Here, an 1H NMR spectroscopy-based metabolomics approach was developed to establish a metabolic ‘biomarker pattern' in a model of rheumatoid arthritis, the K/BxN transgenic mouse. Sera obtained from arthritic K/BxN mice (N = 15) and a control population (N = 19) having the same genetic background, but lacking the arthritogenic T-cell receptor KRN transgene, were compared by 1H NMR spectroscopy. A unique method was developed by combining technologies such as ultrafiltration to remove proteins from serum samples, quantitative ‘targeted profiling' of known metabolites, pseudo-quantitative profiling of unknown resonances, a supervised O-PLS-DA pattern recognition analysis, and a metabolic-pathway based network analysis for interpretation of results. In total, 88 spectral features were profiled (59 metabolites and 28 unknown resonances). A highly significant subset of 18 s...