scispace - formally typeset
Search or ask a question

Showing papers on "Metaphase published in 2002"


Journal ArticleDOI
TL;DR: It is reported that H3 phosphorylation occurs at Ser28, as well as at Ser10 during mitosis, at least in mammals, and Aurora B was recently demonstrated to be responsible for Ser10 phosphorylated in S. cerevisiae, Drosophila and Xenopus egg extract.
Abstract: BACKGROUND: Histone H3 (H3) phosphorylation plays important roles in mitotic chromosome condensation We reported that H3 phosphorylation occurs at Ser28, as well as at Ser10 during mitosis, at least in mammals Aurora B was recently demonstrated to be responsible for Ser10 phosphorylation in S cerevisiae, C elegans, Drosophila and Xenopus egg extract RESULTS: We compared the distribution of Aurora-B with that of H3 phosphorylation Aurora-B was primarily localized in the heterochromatin of late G2 phase cells, where only Ser10 phosphorylation was observed The treatment of such cells with calyculin A induced Ser28 phosphorylation in the Aurora-B-localized area During prophase to metaphase, Aurora-B was distributed in condensing chromosomes where Ser10 and Ser28 were phosphorylated Aurora-B can phosphorylate H3-Ser10 and -Ser28 in nucleosomes in vitro Transfection of a dominant-negative mutant of Aurora-B resulted in a reduction of H3 phosphorylation, not only at Ser10 but also Ser28, during mitosis CONCLUSIONS: With regard to mitotic chromosome condensation, Aurora-B directly phosphorylated H3, not only at Ser10 but also at Ser28 The level of Ser28 phosphorylation is diminished to undetectable levels by PP1 phosphatase prior to entry into mitosis

365 citations


Journal ArticleDOI
TL;DR: Live cell imaging is used to determine the exact time when human securin is degraded in mitosis, and it is shown that the timing ofSecurin destruction is set by the spindle checkpoint; secur in destruction begins at metaphase once the checkpoint is satisfied.
Abstract: Progress through mitosis is controlled by the sequential destruction of key regulators including the mitotic cyclins and securin, an inhibitor of anaphase whose destruction is required for sister chromatid separation. Here we have used live cell imaging to determine the exact time when human securin is degraded in mitosis. We show that the timing of securin destruction is set by the spindle checkpoint; securin destruction begins at metaphase once the checkpoint is satisfied. Furthermore, reimposing the checkpoint rapidly inactivates securin destruction. Thus, securin and cyclin B1 destruction have very similar properties. Moreover, we find that both cyclin B1 and securin have to be degraded before sister chromatids can separate. A mutant form of securin that lacks its destruction box (D-box) is still degraded in mitosis, but now this is in anaphase. This destruction requires a KEN box in the NH2 terminus of securin and may indicate the time in mitosis when ubiquitination switches from APCCdc20 to APCCdh1. Lastly, a D-box mutant of securin that cannot be degraded in metaphase inhibits sister chromatid separation, generating a cut phenotype where one cell can inherit both copies of the genome. Thus, defects in securin destruction alter chromosome segregation and may be relevant to the development of aneuploidy in cancer.

363 citations


Journal ArticleDOI
TL;DR: It is demonstrated that although both reported localizations of survivin exist in mitotic cells, the preponderant survivin pool is associated with microtubules and participates in the assembly of a bipolar mitotic spindle.
Abstract: Survivin is a member of the inhibitor of apoptosis gene family that has been implicated in both apoptosis inhibition and regulation of mitosis. However, the subcellular distribution of survivin has been controversial and variously described as a microtubule-associated protein or chromosomal passenger protein. Here, we show that antibodies directed to the survivin sequence Ala(3)-Ile(19) exclusively recognized a nuclear pool of survivin that segregated with nucleoplasmic proteins, but not with outer nuclear matrix or nuclear matrix proteins. By immunofluorescence, nuclear survivin localized to kinetochores of metaphase chromosomes, and to the central spindle midzone at anaphase. However, antibodies to Cys(57)-Trp(67) identified a cytosolic pool of survivin, which associated with interphase microtubules, centrosomes, spindle poles and mitotic spindle microtubules at metaphase and anaphase. Polyclonal antibodies recognizing survivin epitopes Ala(3)-Ile(19), Met(38)-Thr(48), Pro(47)-Phe(58) and Cys(57)-Trp(67) identified both survivin pools within the same mitotic cell. A ratio of approximately 1:6 for nuclear versus cytosolic survivin was obtained by quantitative subcellular fractionation. In synchronized cultures, cytosolic survivin abruptly increased at mitosis, physically associated with p34(cdc2), and was phosphorylated by p34(cdc2) on Thr(34), in vivo. By contrast, nuclear survivin began to accumulate in S phase, was not complexed with p34(cdc2) and was not phosphorylated on Thr(34). Intracellular loading of a polyclonal antibody to survivin caused microtubule defects and resulted in formation of multipolar mitotic spindles, but did not interfere with cytokinesis. These data demonstrate that although both reported localizations of survivin exist in mitotic cells, the preponderant survivin pool is associated with microtubules and participates in the assembly of a bipolar mitotic spindle.

339 citations


Journal ArticleDOI
TL;DR: A cell type-specific modulation of Cdk1 might be taken advantage of for the therapeutic correction of pathogenic imbalances in apoptosis control.
Abstract: The cyclin-dependent kinase 1 (Cdk1), formerly called Cdc2 (or p34(Cdc2)), interacts with cyclin B1 to form an active heterodimer. The activity of Cdk1 is subjected to a complex spatiotemporary regulation, required to guarantee its scheduled contribution to the mitotic prophase and metaphase. Moreover, the activation of Cdk1 may be required for apoptosis induction in some particular pathways of cell killing. This applies to several clinically important settings, for instance to paclitaxel-induced killing of breast cancer cells, in which the ErbB2 receptor kinase can mediate apoptosis inhibition through inactivation of Cdk1. The activation of Cdk1 participates also in HIV-1-induced apoptosis, upstream of the p53-dependent mitochondrial permeabilization step. An unscheduled Cdk1 activation may contribute to neuronal apoptosis occurring in neurodegenerative diseases. Finally, the premature activation of Cdk1 can lead to mitotic catastrophe, for instance after irradiation-induced DNA damage. Thus, a cell type-specific modulation of Cdk1 might be taken advantage of for the therapeutic correction of pathogenic imbalances in apoptosis control.

320 citations


Journal ArticleDOI
TL;DR: It is shown that a recently identified formin homology (FH) gene, formin-2 (Fmn2), is a maternal-effect gene that is expressed in oocytes and is required for progression through metaphase of meiosis I, which results in errors in meiotic maturation causing severe birth defects.
Abstract: Successful reproduction in mammals requires a competent egg, which is formed during meiosis through two assymetrical cell divisions. Here, we show that a recently identified formin homology (FH) gene, formin-2 (Fmn2), is a maternal-effect gene that is expressed in oocytes and is required for progression through metaphase of meiosis I. Fmn2(-/-) oocytes cannot correctly position the metaphase spindle during meiosis I and form the first polar body. We demonstrate that Fmn2 is required for microtubule-independent chromatin positioning during metaphase I. Fertilization of Fmn2(-/-) oocytes results in polyploid embryo formation, recurrent pregnancy loss and sub-fertility in Fmn2(-/-) females. Injection of Fmn2 mRNA into Fmn2-deficient oocytes rescues the metaphase I block. Given that errors in meiotic maturation result in severe birth defects and are the most common cause of chromosomal aneuploidy and pregnancy loss in humans, studies of Fmn2 may provide a better understanding of infertility and birth defects.

317 citations


Journal ArticleDOI
TL;DR: Selective deletion of CENP-E in liver revealed that tissue regeneration after chemical damage was accompanied by aberrant mitoses marked by chromosome missegregation, and CENE is thus essential for the maintenance of chromosomal stability through efficient stabilization of microtubule capture at kinetochores.

316 citations


Journal ArticleDOI
TL;DR: Kinetochores depleted of hNuf2 retain the microtubule motors CENP-E and cytoplasmic dynein, proteins previously implicated in recruiting kinetochore microtubules, as expected for activation of the spindle checkpoint by unattached kinetchores.
Abstract: Identification of proteins that couple kinetochores to spindle microtubules is critical for understanding how accurate chromosome segregation is achieved in mitosis. Here we show that the protein hNuf2 specifically functions at kinetochores for stable microtubule attachment in HeLa cells. When hNuf2 is depleted by RNA interference, spindle formation occurs normally as cells enter mitosis, but kinetochores fail to form their attachments to spindle microtubules and cells block in prometaphase with an active spindle checkpoint. Kinetochores depleted of hNuf2 retain the microtubule motors CENP-E and cytoplasmic dynein, proteins previously implicated in recruiting kinetochore microtubules. Kinetochores also retain detectable levels of the spindle checkpoint proteins Mad2 and BubR1, as expected for activation of the spindle checkpoint by unattached kinetochores. In addition, the cell cycle block produced by hNuf2 depletion induces mitotic cells to undergo cell death. These data highlight a specific role for hNuf2 in kinetochore–microtubule attachment and suggest that hNuf2 is part of a molecular linker between the kinetochore attachment site and tubulin subunits within the lattice of attached plus ends.

284 citations


Journal Article
TL;DR: It is demonstrated that survivin functions at cell division to control microtubule stability and assembly of a normal mitotic spindle in vivo, which may facilitate checkpoint evasion and promote resistance to chemotherapy in cancer.
Abstract: Survivin is a member of the inhibitor of apoptosis (IAP) gene family, which has been implicatedin both preservation of cell viability and regulation of mitosis in cancercells. Here, we show that HeLa cells microinjected with a polyclonal antibody to survivin exhibited delayed progression in prometaphase (31.5 ± 6.9 min) and metaphase (126.8 ± 73.8 min), as compared with control injected cells (prometaphase, 21.5 ± 3.3 min; metaphase, 18.9 ± 4.5 min; P

271 citations


Journal ArticleDOI
TL;DR: It is concluded that the delay in mitosis induced by DNA damage is not due to an ATM-mediated DNA damage checkpoint pathway, but rather, the damage leads to defects in kinetochore attachment and function that, in turn, maintain the intrinsic Mad-2-based spindle assembly checkpoint.

229 citations


Journal ArticleDOI
TL;DR: It is suggested that not only in spc34‐3 and Δscc1 cells but also in wild‐type cells, sister centromeres bind after replication preferentially to microtubules organized by the old SPB.
Abstract: We show here that Ask1p, Dad2p, Spc19p and Spc34p are subunits of the budding yeast Duo1p–Dam1p– Dad1p complex, which associate with kinetochores and localize along metaphase and anaphase spindles Analysis of spc34-3 cells revealed three novel functions of the Duo1–Dam1p–Dad1p subunit Spc34p First, SPC34 is required to establish biorientation of sister kinetochores Secondly, SPC34 is essential to maintain biorientation Thirdly, SPC34 is necessary to maintain an anaphase spindle independently of chromosome segregation Moreover, we show that in spc34-3 cells, sister centromeres preferentially associate with the pre-existing, old spindle pole body (SPB) A similar preferential attachment of sister centromeres to the old SPB occurs in cells depleted of the cohesin Scc1p, a protein with a known role in facilitating biorientation Thus, the two SPBs are not equally active in early S phase We suggest that not only in spc34-3 and Δscc1 cells but also in wild-type cells, sister centromeres bind after replication preferentially to microtubules organized by the old SPB Monopolar attached sister centromeres are resolved to bipolar attachment in wild-type cells but persist in spc34-3 cells

181 citations


Journal ArticleDOI
TL;DR: Xenopus data indicate that a change in the CPEB:CPE ratio is necessary to activate mRNAs at metaphase I and drive the cells' entry into metaphase II.
Abstract: Translational activation of several dormant mRNAs in vertebrate oocytes is mediated by cytoplasmic polyadenylation, a process controlled by the cytoplasmic polyadenylation element (CPE) and its binding protein CPEB. The translation of CPE-containing mRNAs does not occur en masse at any one time, but instead is temporally regulated. We show here that in Xenopus, partial destruction of CPEB controls the temporal translation of CPE-containing mRNAs. While some mRNAs, such as the one encoding Mos, are polyadenylated at prophase I, the polyadenylation of cyclin B1 mRNA requires the partial destruction of CPEB that occurs at metaphase I. CPEB destruction is mediated by a PEST box and Cdc2-catalyzed phosphorylation, and is essential for meiotic progression to metaphase II. CPEB destruction is also necessary for mitosis in the early embryo. These data indicate that a change in the CPEB:CPE ratio is necessary to activate mRNAs at metaphase I and drive the cells' entry into metaphase II.

Journal ArticleDOI
TL;DR: The results demonstrate that the mitotic checkpoint efficiently prevents the possible aneuploid burden due to mono-oriented chromosomes and that merotelic kinetochore orientation is a major limitation for accurate chromosome segregation and a potentially important mechanism of aneuPLoidy in human cells.
Abstract: Defects in chromosome segregation play a critical role in producing genomic instability and aneuploidy, which are associated with congenital diseases and carcinogenesis. We recently provided evidence from immunofluorescence and electron microscopy studies that merotelic kinetochore orientation is a major mechanism for lagging chromosomes during mitosis in PtK1 cells. Here we investigate whether human primary fibroblasts exhibit similar errors in chromosome segregation and if at least part of lagging chromosomes may arise in cells entering anaphase in the presence of mono-oriented chromosomes. By using in situ hybridization with alphoid probes to chromosome 7 and 11 we showed that loss of a single sister is much more frequent than loss of both sisters from the same chromosome in anatelophases from human primary fibroblasts released from a nocodazole-induced mitotic arrest, as predicted from merotelic orientation of single kinetochores. Furthermore, the lagging of pairs of separated sisters was higher than expected from random chance indicating that merotelic orientation of one sister may promote merotelic orientation of the other. Kinetochores of lagging chromosomes in anaphase human cells were found to be devoid of the mitotic checkpoint phosphoepitopes recognized by the 3F3/2 antibody, suggesting that they attached kinetochore microtubules prior to anaphase onset. Live cell imaging of H2B histone-GFP-transfected cells showed that cells with mono-oriented chromosomes never enter anaphase and that lagging chromosomes appear during anaphase after chromosome alignment occurs during metaphase. Thus, our results demonstrate that the mitotic checkpoint efficiently prevents the possible aneuploid burden due to mono-oriented chromosomes and that merotelic kinetochore orientation is a major limitation for accurate chromosome segregation and a potentially important mechanism of aneuploidy in human cells.

Journal ArticleDOI
TL;DR: Kin I plays a fundamental role in the establishment of metaphase, probably by generating poleward forces at the kinetochores, and two models of Kin I function in fission yeast are discussed.

Journal ArticleDOI
TL;DR: In this article, isolated newt chromosomes were studied by using micromechanical force measurement during nuclease digestion, and it was shown that mitotic chromosomes are constrained by isolated chromatin-crosslinking elements spaced by ≈15 kb.
Abstract: Isolated newt (Notophthalmus viridescens) chromosomes were studied by using micromechanical force measurement during nuclease digestion. Micrococcal nuclease and short-recognition-sequence blunt-cutting restriction enzymes first remove the native elastic response of, and then to go on to completely disintegrate, single metaphase newt chromosomes. These experiments rule out the possibility that the mitotic chromosome is based on a mechanically contiguous internal non-DNA (e.g., protein) “scaffold”; instead, the mechanical integrity of the metaphase chromosome is due to chromatin itself. Blunt-cutting restriction enzymes with longer recognition sequences only partially disassemble mitotic chromosomes and indicate that chromatin in metaphase chromosomes is constrained by isolated chromatin-crosslinking elements spaced by ≈15 kb.

Journal ArticleDOI
TL;DR: Rapid transit of Cdc20 through kinetochores may ensure that spindle checkpoint signaling at unattached/relaxed kinetchores can continuously inhibit APC/CCdc20 targeting of anaphase inhibitors (securins) throughout the cell until all the chromosomes are properly attached to the mitotic spindle.
Abstract: Cdc20 is a substrate adaptor and activator of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase whose activity is required for anaphase onset and exit from mitosis. A green fluorescent protein derivative, Cdc20–GFP, bound to centrosomes throughout the cell cycle and to kinetochores from late prophase to late telophase. We mapped distinct domains of Cdc20 that are required for association with kinetochores and centrosomes. FRAP measurements revealed extremely rapid dynamics at the kinetochores (t1/2 = 5.1 s) and spindle poles (t1/2 = 4.7 s). This rapid turnover is independent of microtubules. Rapid transit of Cdc20 through kinetochores may ensure that spindle checkpoint signaling at unattached/relaxed kinetochores can continuously inhibit APC/CCdc20 targeting of anaphase inhibitors (securins) throughout the cell until all the chromosomes are properly attached to the mitotic spindle.

Journal ArticleDOI
TL;DR: It is suggested for the first time that Pak1 interacts with and phosphorylates histone H3 and may thus influence the Pak1–hist one H3 pathway, which in turn may influence mitotic events in breast cancer cells.
Abstract: Stimulation of p21-activated kinase-1 (Pak1) signaling promotes motility, invasiveness, anchorage-independent growth and abnormal mitotic assembly in human breast cancer cells. Here, we provide new evidence that, before the onset of mitosis, activated Pak1 is specifically localized with the chromosomes during prophase and on the centrosomes in metaphase and moves to the contraction ring during cytokinesis. To identify mitosis-specific substrates of Pak1, we screened a synchronized G2–M expression library by using a glutathione transferase Pak1 solid-phase-based kinase reaction. This analysis identified histone H3 as a substrate of Pak1 both in vitro and in vivo, and it specifically interacted with Pak1 but not Pak2 or Pak3. Site-directed mutagenesis indicated that Pak1 phosphorylates histone H3 on Ser10. Expressions of the wild-type, or catalytically active, Pak1 caused it to appear at the poles corresponding to mitotic centrosomes in a variety of mammalian cells. Together, these results suggest for the first time that Pak1 interacts with and phosphorylates histone H3 and may thus influence the Pak1–histone H3 pathway, which in turn may influence mitotic events in breast cancer cells.

Journal ArticleDOI
TL;DR: The 2.0 Å crystal structure of a novel domain composed of the polo box motif of murine Sak is reported, showing that this domain forms homodimers both in vitro and in vivo, and localizes to centrosomes and the cleavage furrow during cytokinesis.
Abstract: The small family of polo-like kinases (Plks) includes Cdc5 from Saccharomyces cerevisiae, Plo1 from Schizosaccharomyces pombe, Polo from Drosophila melanogaster and the four mammalian genes Plk1, Prk/Fnk, Snk and Sak. These kinases control cell cycle progression through the regulation of centrosome maturation and separation, mitotic entry, metaphase to anaphase transition, mitotic exit and cytokinesis. Plks are characterized by an N-terminal Ser/Thr protein kinase domain and the presence of one or two C-terminal regions of similarity, termed the polo box motifs. These motifs have been demonstrated for Cdc5 and Plk1 to be required for mitotic progression and for subcellular localization to mitotic structures. Here we report the 2.0 A crystal structure of a novel domain composed of the polo box motif of murine Sak. The structure consists of a dimeric fold with a deep interfacial cleft and pocket, suggestive of a ligand-binding site. We show that this domain forms homodimers both in vitro and in vivo, and localizes to centrosomes and the cleavage furrow during cytokinesis. The requirement of the polo domain for Plk family function and the unique physical properties of the domain identify it as an attractive target for inhibitor design.

Journal ArticleDOI
TL;DR: Evidence is provided that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity in Drosophila mast mutant embryos undergoing early mitotic divisions.
Abstract: Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.

Journal ArticleDOI
TL;DR: It is proposed that cytoplasmic dynein-dependent inward motion of Mts functions to remove Mts from the cy toplasm at prophase and from the peripheral cytop lasm through metaphase, and that dynamic astral Mts search the cytopLasm for other Mts, as well as chromosomes, in mitosis.
Abstract: When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP–α-tubulin were directly observed from prophase to just after nuclear envelope breakdown (NEBD) in early prometaphase. Our results demonstrate a transient stimulation of individual Mt dynamic turnover and the formation and inward motion of microtubule bundles in these cells. Motion of microtubule bundles was inhibited after antibody-mediated inhibition of cytoplasmic dynein/dynactin, but was not inhibited after inhibition of the kinesin-related motor Eg5 or myosin II. In metaphase cells, assembly of small foci of Mts was detected at sites distant from the spindle; these Mts were also moved inward. We propose that cytoplasmic dynein-dependent inward motion of Mts functions to remove Mts from the cytoplasm at prophase and from the peripheral cytoplasm through metaphase. The data demonstrate that dynamic astral Mts search the cytoplasm for other Mts, as well as chromosomes, in mitotic cells.

Journal ArticleDOI
25 Apr 2002-Nature
TL;DR: It is shown that the APCcdc20 inhibitor Emi1 is necessary and sufficient to inhibit the anaphase-promoting complex/cyclosome and to prevent mitotic exit in CSF-arrested eggs.
Abstract: Vertebrate eggs are arrested at metaphase of meiosis II with stable cyclin B and high cyclin B/Cdc2 kinase activity. The ability of the anaphase-promoting complex/cyclosome (APC), an E3 ubiquitin ligase, to trigger cyclin B destruction and metaphase exit is blocked in eggs by the activity of cytostatic factor (CSF) (reviewed in ref. 1). CSF was defined as an activity in mature oocytes that caused mitotic arrest when injected into dividing embryos2. Fertilization causes a transient increase in cytoplasmic calcium concentration leading to CSF inactivation, APC activation, cyclin B destruction and mitotic exit3. The APC activator Cdc20 is required for APC activation after fertilization4,5. We show here that the APCcdc20 inhibitor Emi1 (ref. 6) is necessary and sufficient to inhibit the APC and to prevent mitotic exit in CSF-arrested eggs. CSF extracts immunodepleted of Emi1 degrade cyclin B, and exit from mitosis prematurely in the absence of calcium. Addition of Emi1 to these Emi1-depleted extracts blocks premature inactivation of the CSF-arrested state. Emi1 is required to arrest unfertilized eggs at metaphase of meiosis II and seems to be the long-sought mediator of CSF activity.

Journal ArticleDOI
TL;DR: In the nda3 mutant, which has a mutation in ss-tubulin and has been thought to be arrested at prophase, an F-actin ring with accumulated F-Actin cables similar to that of anaphase wild-type cells was formed at a restrictive temperature and immediately after shifting to a permissive temperature, this structure changed into a tightly packed ring.
Abstract: Cells of the fission yeast Schizosaccharomyces pombe divide by the contraction of the F-actin ring formed at the medial region of the cell. We investigated the process of F-actin ring formation in detail using optical sectioning and three-dimensional reconstruction fluorescence microscopy. In wild-type cells, formation of an aster-like structure composed of F-actin cables and accumulation of F-actin cables were recognized at the medial cortex of the cell during prophase to metaphase. The formation of the aster-like structure seemed to initiate from branching of the longitudinal F-actin cables at a site near the spindle pole bodies, which had been duplicated but not yet separated. A single cable extended from the aster and encircled the cell at the equator to form a primary F-actin ring during metaphase. During anaphase, the accumulated F-actin cables were linked to the primary F-actin ring, and then all of these structures seemed to be packed to form the F-actin ring. These observations suggest that formation of the aster-like structure and the accumulation of the F-actin cables at the medial region of the cell during metaphase may be required to initiate the F-actin ring formation. In the nda3 mutant, which has a mutation in ss-tubulin and has been thought to be arrested at prophase, an F-actin ring with accumulated F-actin cables similar to that of anaphase wild-type cells was formed at a restrictive temperature. Immediately after shifting to a permissive temperature, this structure changed into a tightly packed ring. This suggests that the F-actin ring formation progresses beyond prophase in the nda3 cells once the cells enter prophase. We further examined F-actin structures in both cdc12 and cdc15 early cytokinesis mutants. As a result, Cdc12 seemed to be required for the primary F-actin ring formation during prophase, whereas Cdc15 may be involved in both packing the F-actin cables to form the F-actin ring and rearrangement of the F-actin after anaphase. In spg1, cdc7 and sid2 septum initiation mutants, the F-actin ring seemed to be formed in order.

Journal ArticleDOI
TL;DR: It is concluded that reduced tension at kinetochores with a full complement of Kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetchore 3F3/2, Bub1, and BubR1 labeling.
Abstract: The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.

Journal ArticleDOI
TL;DR: The results suggest that, throughout this isometric state, an outward force exerted on the spindle poles by MT sliding motors is balanced by flux, and that suppression of flux could tip the balance of forces at the onset of anaphase B, allowing MT sliding and polymerization to push the poles apart.
Abstract: We proposed that spindle morphogenesis in Drosophila embryos involves progression through four transient isometric structures in which a constant spacing of the spindle poles is maintained by a balance of forces generated by multiple microtubule (MT) motors and that tipping this balance drives pole-pole separation. Here we used fluorescent speckle microscopy to evaluate the influence of MT dynamics on the isometric state that persists through metaphase and anaphase A and on pole-pole separation in anaphase B. During metaphase and anaphase A, fluorescent punctae on kinetochore and interpolar MTs flux toward the poles at 0.03 μm/s, too slow to drive chromatid-to-pole motion at 0.11 μm/s, and during anaphase B, fluorescent punctae on interpolar MTs move away from the spindle equator at the same rate as the poles, consistent with MT-MT sliding. Loss of Ncd, a candidate flux motor or brake, did not affect flux in the metaphase/anaphase A isometric state or MT sliding in anaphase B but decreased the duration of the isometric state. Our results suggest that, throughout this isometric state, an outward force exerted on the spindle poles by MT sliding motors is balanced by flux, and that suppression of flux could tip the balance of forces at the onset of anaphase B, allowing MT sliding and polymerization to push the poles apart.

Journal ArticleDOI
TL;DR: It is proposed that the loss of this targeting function leads to abnormal endothelial tube formation, thereby explaining the mechanism of formation of cerebral cavernous malformation (CCM) lesions.
Abstract: Mutations in Krev1 interaction trapped gene 1 (KRIT1) cause cerebral cavernous malformation, an autosomal dominant disease featuring malformation of cerebral capillaries resulting in cerebral hemorrhage, strokes, and seizures. The biological functions of KRIT1 are unknown. We have investigated KRIT1 expression in endothelial cells by using specific anti-KRIT1 antibodies. By both microscopy and coimmunoprecipitation, we show that KRIT1 colocalizes with microtubules. In interphase cells, KRIT1 is found along the length of microtubules. During metaphase, KRIT1 is located on spindle pole bodies and the mitotic spindle. During late phases of mitosis, KRIT1 localizes in a pattern indicative of association with microtubule plus ends. In anaphase, the plus ends of the interpolar microtubules show strong KRIT1 staining and, in late telophase, KRIT1 stains the midbody remnant most strongly; this is the site of cytokinesis where plus ends of microtubules from dividing cells overlap. These results establish that KRIT1 is a microtubule-associated protein; its location at plus ends in mitosis suggests a possible role in microtubule targeting. These findings, coupled with evidence of interaction of KRIT1 with Krev1 and integrin cytoplasmic domain-associated protein-1 alpha (ICAP1 α), suggest that KRIT1 may help determine endothelial cell shape and function in response to cell–cell and cell–matrix interactions by guiding cytoskeletal structure. We propose that the loss of this targeting function leads to abnormal endothelial tube formation, thereby explaining the mechanism of formation of cerebral cavernous malformation (CCM) lesions.

Journal ArticleDOI
TL;DR: Observations suggest that a spindle assembly checkpoint, rather than a recombination or chiasmata checkpoint, may be activated in response to meiotic errors, thereby ensuring elimination of chromosomally abnormal gamete precursors.

Journal ArticleDOI
TL;DR: Embryos deprived of Ran by RNAi showed metaphase chromosome misalignment and aberrant chromosome segregation, while astral microtubules seemed unaffected, and immunofluorescent staining showed that Ran localizes to kinetochore regions of metaphase and anaphase chromosomes, suggesting the role of Ran in linking chromosomes to kinentochoremicrotubules.

Journal ArticleDOI
TL;DR: It is proposed that in mammalian cells pescadillo is essential for ribosome biogenesis and nucleologenesis and that disruption to its function results in cell cycle arrest.

Journal ArticleDOI
TL;DR: The results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylated and reactivation of coFilin at later stages ofMitosis play a critical role in cytokinesis of mammalian cells.

Journal ArticleDOI
TL;DR: The results show that chromosome spreading involves significant water-induced swelling of mitotic cells during evaporation of the fixative from the slide, which is a prerequisite for chromosomal elongation, the production of metaphase spreads for chromosome analysis, and the appearance of Giemsa banding patterns.
Abstract: The processes taking place during routine chromosome preparation are not well understood. In this study, the morphological changes in amniotic fluid cells, blood lymphocytes, and bone marrow cells in the metaphase stage were examined under an inverted microscope during chromosome preparation. The putative processes that occur during chromosome preparation were simulated in suspension, and the cells were treated with different mixtures of hypotonic solution, fixative, methanol, acetic acid, and water. Evaporation of the fixative was performed under normal atmospheric conditions and under vacuum at different levels of humidity. Freeze fracture electron microscopy was used to analyze the effects of fixative on the cell membrane. Confocal microscopic analysis was used to investigate three-dimensionally the effects of hypotonic treatment on the positions of chromosomes in fixed mitotic lymphocytes. Chromosome preparation-induced changes in the lengths of single chromosomes were also investigated. The results show that chromosome spreading involves significant water-induced swelling of mitotic cells during evaporation of the fixative from the slide, which is a prerequisite for chromosomal elongation, the production of metaphase spreads for chromosome analysis, and the appearance of Giemsa banding patterns. Hypotonic treatment is essential for well-spread metaphase chromosomes because it moves the chromosomes from a central to a more peripheral position in the cell, where they can be stretched more effectively during mitotic swelling. Like mitotic cells, isolated single chromosomes also have their own potential to swell and lengthen during chromosome preparation. We hypothesize that chromosome preparation leads to a genome-wide chromosomal region-specific opening of chromatin structures as GTG-light bands and sub-bands. Living cells may possess a similar mechanism, which is used only to open single chromatin structures to facilitate transcription. We propose the concept of chromosomal region-specific protein swelling.

Journal ArticleDOI
TL;DR: A new MAPK substrate involved in maintaining spindle integrity during the CSF arrest of mouse oocytes is discovered, called MISS (for MAP kinase–interacting and spindle-stabilizing protein), which is a substrate of the Mos/…/MAPK pathway.
Abstract: Vertebrate oocytes arrest in the second metaphase of meiosis (metaphase II [MII]) by an activity called cytostatic factor (CSF), with aligned chromosomes and stable spindles. Segregation of chromosomes occurs after fertilization. The Mos/…/MAPK (mitogen-activated protein kinases) pathway mediates this MII arrest. Using a two-hybrid screen, we identified a new MAPK partner from a mouse oocyte cDNA library. This protein is unstable during the first meiotic division and accumulates only in MII, where it localizes to the spindle. It is a substrate of the Mos/…/MAPK pathway. The depletion of endogenous RNA coding for this protein by three different means (antisense RNA, double-stranded [ds] RNA, or morpholino oligonucleotides) induces severe spindle defects specific to MII oocytes. Overexpressing the protein from an RNA not targeted by the morpholino rescues spindle destabilization. However, dsRNA has no effect on the first two mitotic divisions. We therefore have discovered a new MAPK substrate involved in maintaining spindle integrity during the CSF arrest of mouse oocytes, called MISS (for MAP kinase–interacting and spindle-stabilizing protein).