scispace - formally typeset
Search or ask a question

Showing papers on "Synchrotron radiation published in 2006"


Journal ArticleDOI
TL;DR: In this article, a high-quality electron beam with 1 GeV energy was achieved by channelling a 40 TW peak-power laser pulse in a 3.3 cm-long gas-filled capillary discharge waveguide.
Abstract: Gigaelectron volt (GeV) electron accelerators are essential to synchrotron radiation facilities and free-electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10–50 MV m−1), requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometres to generate particle energies of interest to high-energy physics. Laser-wakefield accelerators1,2 produce electric fields of the order 10–100 GV m−1 enabling compact devices. Previously, the required laser intensity was not maintained over the distance needed to reach GeV energies, and hence acceleration was limited to the 100 MeV scale3,4,5. Contrary to predictions that petawatt-class lasers would be needed to reach GeV energies6,7, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channelling a 40 TW peak-power laser pulse in a 3.3-cm-long gas-filled capillary discharge waveguide8,9.

1,568 citations


Journal ArticleDOI
06 Jul 2006-Nature
TL;DR: The method of measuring and inverting diffraction patterns from nanocrystals represents a vital step towards the ultimate goal of atomic resolution single-molecule imaging that is a prominent justification for development of X-ray free-electron lasers.
Abstract: Synchrotron X-ray radiation, produced by electron accelerators at central facilities, can now be produced in extremely narrow coherent beams. When these X-rays illuminate a crystal of nanometre dimensions a diffraction pattern emerges that is highly resolved. This provides a powerful new tool for structural analysis, as the fine features of the diffraction pattern can be interpreted in terms of sub-atomic distortions within the crystal attributable to its contact with an external support. Coherent X-ray diffraction patterns derived from third-generation synchrotron radiation sources can lead to quantitative three-dimensional imaging of lattice strain on the nanometre scale. Coherent X-ray diffraction imaging is a rapidly advancing form of microscopy: diffraction patterns, measured using the latest third-generation synchrotron radiation sources, can be inverted to obtain full three-dimensional images of the interior density within nanocrystals1,2,3. Diffraction from an ideal crystal lattice results in an identical copy of this continuous diffraction pattern at every Bragg peak. This symmetry is broken by the presence of strain fields, which arise from the epitaxial contact forces that are inevitable whenever nanocrystals are prepared on a substrate4. When strain is present, the diffraction copies at different Bragg peaks are no longer identical and contain additional information, appearing as broken local inversion symmetry about each Bragg point. Here we show that one such pattern can nevertheless be inverted to obtain a ‘complex’ crystal density, whose phase encodes a projection of the lattice deformation. A lead nanocrystal was crystallized in ultrahigh vacuum from a droplet on a silica substrate and equilibrated close to its melting point. A three-dimensional image of the density, obtained by inversion of the coherent X-ray diffraction, shows the expected facetted morphology, but in addition reveals a real-space phase that is consistent with the three-dimensional evolution of a deformation field arising from interfacial contact forces. Quantitative three-dimensional imaging of lattice strain on the nanometre scale will have profound consequences for our fundamental understanding of grain interactions and defects in crystalline materials4. Our method of measuring and inverting diffraction patterns from nanocrystals represents a vital step towards the ultimate goal of atomic resolution single-molecule imaging that is a prominent justification for development of X-ray free-electron lasers5,6,7.

616 citations


Journal ArticleDOI
TL;DR: In this article, the European Synchrotron Radiation Facility (ESRF) has been used for X-ray micro-tomography at the ESRF to study the internal structures of a fossil organism.
Abstract: Paleontologists are quite recent newcomers among the users of X-ray synchrotron imaging techniques at the European Synchrotron Radiation Facility (ESRF). Studies of the external morphological characteristics of a fossil organism are not sufficient to extract all the information for a paleontological study. Nowadays observations of internal structures become increasingly important, but these observations should be non-destructive in order to preserve the important specimens. Conventional microtomography allows performing part of these investigations. Nevertheless, the best microtomographic images are obtained using third-generation synchrotrons producing hard X-rays, such as the ESRF. Firstly, monochromatisation avoids beam hardening that is frequently strong for paleontological samples. Secondly, the high beam intensity available at synchrotron radiation sources allows rapid data acquisition at very high spatial resolutions, resulting in precise mapping of the internal structures of the sample. Thirdly, high coherence leads to additional imaging possibilities: phase contrast radiography, phase contrast microtomography and holotomography. These methods greatly improve the image contrast and therefore allow studying fossils that cannot be investigated by conventional microtomography due to a high degree of mineralisation or low absorption contrast. Thanks to these different properties and imaging techniques, a synchrotron radiation source and the ESRF in particular appears as an almost ideal investigation tool for paleontology.

394 citations


Journal ArticleDOI
Valeri Ayvazyan, N. Baboi, J. Bähr, V. Balandin, B. Beutner1, Andrew Brandt, I. Bohnet, A. Bolzmann, R. Brinkmann, O. I. Brovko2, Jean-Paul Carneiro, S. Casalbuoni, M. Castellano, P. Castro, L. Catani, Enrica Chiadroni, S. Choroba, Alessandro Cianchi, H. Delsim-Hashemi1, G. Di Pirro, Martin Dohlus, S. Düsterer, H. T. Edwards3, Bart Faatz, A.A. Fateev2, Josef Feldhaus, Klaus Flöttmann, Josef Frisch4, L. Fröhlich1, T. Garvey5, U. Gensch, N. Golubeva, H.-J. Grabosch, Bagrat Grigoryan6, O. Grimm, U. Hahn, J.H. Han, M.v. Hartrott, K. Honkavaara1, M. Hüning, Rasmus Ischebeck, E. Jaeschke, M. Jablonka, R. Kammering, V. Katalev, B. Keitel, Sergiy Khodyachykh, Y. Kim, Vitali Kocharyan, M. Körfer, M. Kollewe, D. Kostin, D. Krämer, Mikhail Krassilnikov, G. Kube, L. Lilje, T. Limberg, Dirk Lipka, Florian Löhl1, M. Luong, C. Magne, J. Menzel, Paolo Michelato, Velizar Miltchev, M. Minty, W.-D. Möller, Laura Monaco, Wolfgang Franz Otto Müller7, M. Nagl, Olivier Napoly, Piergiorgio Nicolosi8, Dirk Nölle, T. Nunez, Anne Oppelt, Carlo Pagani, R. Paparella, Brian Petersen, Bagrat Petrosyan, J. Pflüger, Philippe Piot3, Elke Plönjes, Luca Poletto8, D. Proch, D. Pugachov, K. Rehlich, D. Richter, Sabine Riemann, M.C. Ross4, Jörg Rossbach1, M. Sachwitz, E.L. Saldin, Wolfgang Sandner, Holger Schlarb, Boris Schmidt, M. Schmitz, Peter Schmüser1, J. Schneider, Evgeny Schneidmiller, H. J. Schreiber, Siegfried Schreiber, A. Shabunov2, Daniele Sertore, Stefan Setzer7, S. Simrock, E. Sombrowski, L. Staykov, B. Steffen, Frank Stephan, F. Stulle, K. P. Sytchev2, H. Thom, Kai Tiedtke, M. Tischer, Rolf Treusch, D. Trines, I. Tsakov, Ashot Vardanyan6, Rainer Wanzenberg, Thomas Weiland7, H. Weise, M. Wendt, Ingo Will, A. Winter, K. Wittenburg, Mikhail Yurkov, Igor Zagorodnov7, P. Zambolin8, K. Zapfe 
TL;DR: In this paper, the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence.
Abstract: Many scientific disciplines ranging from physics, chemistry and biology to material sciences, geophysics and medical diagnostics need a powerful X-ray source with pulse lengths in the femtosecond range [1-4]. This would allow, for example, time-resolved observation of chemical reactions with atomic resolution. Such radiation of extreme intensity, and tunable over a wide range of wavelengths, can be accomplished using high-gain free-electron lasers (FEL) [5-10]. Here we present results of the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence. The experimental data are in full agreement with theory. This is the shortest wavelength achieved with an FEL to date and an important milestone towards a user facility designed for wavelengths down to 6 nm. With a peak brilliance exceeding the state-of-the-art of synchrotron radiation sources [4] by seven orders of magnitude, this device opens a new field of experiments, and it paves the way towards sources with even shorter wavelengths, such as the Linac Coherent Light Source [3] at Stanford, USA, and the European X-ray Free Electron Laser Facility [4] in Hamburg, Germany.

353 citations


Journal ArticleDOI
TL;DR: The calculated dose limit of 2 x 10(7) Gy for the diffracting power of cryocooled protein crystals to drop by half has been experimentally evaluated at a third-generation synchrotron source.
Abstract: Radiation damage to cryocooled protein crystals during x-ray structure determination has become an inherent part of macromolecular diffraction data collection at third-generation synchrotrons. Generally, radiation damage is an undesirable component of the experiment and can result in erroneous structural detail in the final model. The characterization of radiation damage thus has become an important area for structural biologists. The calculated dose limit of 2 × 107 Gy for the diffracting power of cryocooled protein crystals to drop by half has been experimentally evaluated at a third-generation synchrotron source. Successive data sets were collected from four holoferritin and three apoferritin crystals. The absorbed dose for each crystal was calculated by using the program raddose after measurement of the incident photon flux and determination of the elemental crystal composition by micro-particle-induced x-ray emission. Degradation in diffraction quality and specific structural changes induced by synchrotron radiation then could be compared directly with absorbed dose for different dose/dose rate regimes: a 10% lifetime decrease for a 10-fold dose rate increase was observed. Remarkable agreement both between different crystals of the same type and between apoferritin and holoferritin was observed for the dose required to reduce the diffracted intensity by half (D1/2). From these measurements, a dose limit of D1/2 = 4.3 (±0.3) ×107 Gy was obtained. However, by considering other data quality indicators, an intensity reduction to Iln2 = ln2 × I0, corresponding to an absorbed dose of 3.0 × 107 Gy, is recommended as an appropriate dose limit for typical macromolecular crystallography experiments.

323 citations


Journal ArticleDOI
TL;DR: The first fast microtomography experiment including radiation hardness of the optic is shown, which uses a high-intensity white beam with 60 keV effective energy and a fast CCD camera at up to 60 frames s(-1).
Abstract: X-ray detectors for imaging with a spatial resolution in the micrometer and submicrometer range have been developed at synchrotron radiation sources since 1996. The detectors consist of a scintillator, a light microscopy optic and a charge-coupled device (CCD). The scintillator converts part of the X-ray stopped by a material into a visible-light image which is projected onto the CCD by the light optics. A resolution of 0.5 microm FWHM has been achieved using a 1 microm-thick europium-doped Lu3Al5O12 film. The detective quantum efficiency of the detector is mainly limited by the low absorption of X-rays in the thin layer of the scintillator. To increase the absorption, and therefore reduce the exposure time, new scintillators (Lu2O3:Eu3+, Gd2O3:Eu3+, Lu2SiO5:Ce, Gd3Ga5O12:Eu3+, CdWO4) have been investigated. These were fabricated using sol-gel and liquid-phase epitaxy processes. Finally, the first fast microtomography experiment including radiation hardness of the optic is shown. This detector uses a high-intensity white beam with 60 keV effective energy and a fast CCD camera at up to 60 frames s(-1).

294 citations


Journal ArticleDOI
TL;DR: A type of linear zone plate for nanometer-scale focusing of hard x rays, a multilayer Laue lens (MLL), produced by sectioning a multILayer and illuminating it in Laue diffraction geometry, indicates that focusing to 5 nm or smaller with high efficiency should be possible.
Abstract: We report on a type of linear zone plate for nanometer-scale focusing of hard x rays, a multilayer Laue lens (MLL), produced by sectioning a multilayer and illuminating it in Laue diffraction geometry. Because of its large optical depth, a MLL spans the diffraction regimes applicable to a thin Fresnel zone plate and a crystal. Coupled wave theory calculations indicate that focusing to 5 nm or smaller with high efficiency should be possible. Partial MLL structures with outermost zone widths as small as 10 nm have been fabricated and tested with 19.5 keV synchrotron radiation. Focal sizes as small as 30 nm with efficiencies up to 44% are measured.

268 citations


Proceedings ArticleDOI
TL;DR: The beamline design, its optical components and the endstation are presented, two recently developed phase contrast techniques are illustrated and an overview of recent research topics which make intense use of SRXTM are given.
Abstract: Synchrotron-based X-ray Tomographic Microscopy (SRXTM) is nowadays a powerful technique for non-destructive, high-resolution investigations of a broad kind of materials. High-brilliance and high-coherence third generation synchrotron radiation facilities allow micrometer and sub-micrometer, quantitative, three-dimensional imaging within very short time and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements. At the Swiss Light Source TOMCAT, a new beamline for TOmographic Microscopy and Coherent rAdiology experimenTs, has been recently built and started regular user operation in June 2006. The new beamline get photons from a 2.9 T superbend with a critical energy of 11.1 keV. This makes energies above 20 keV easily accessible. To guarantee the best beam quality (stability and homogeneity), the number of optical elements has been kept to a minimum. A Double Crystal Multilayer Monochromator (DCMM) covers an energy range between 8 and 45 keV with a bandwidth of a few percent down to 10-4. The beamline can also be operated in white-beam mode, providing the ideal conditions for real-time coherent radiology. This article presents the beamline design, its optical components and the endstation. It further illustrates two recently developed phase contrast techniques and finally gives an overview of recent research topics which make intense use of SRXTM.

261 citations


Journal ArticleDOI
TL;DR: In this paper, a 5m long spectrometer for soft x rays was used at a synchrotron radiation beamline for resonant x-ray emission spectroscopy and resonant inelastic xray scattering in the 400-1600eV energy range.
Abstract: We present a 5m long spectrometer for soft x rays to be used at a synchrotron radiation beamline for resonant x-ray emission spectroscopy and resonant inelastic x-ray scattering in the 400–1600eV energy range. It is based on a variable line spacing spherical grating (average groove density of 3200mm−1, R=58.55m) and a charge coupled device two dimensional detector. With an x-ray spot on the sample of 10μm, the targeted resolving power is higher than 10 000 at all energies below 1100eV and better than 7000 at 1500eV. The off-line tests made with Al and MgKα1,2 fluorescence emissions indicate that the spectrometer can actually work at 12 000 and 17 000 resolving power at the L3 edges of Cu (930eV) and of Ti (470eV), respectively. SAXES (superadvanced x-ray emission spectrometer) is mounted on a rotating platform allowing to vary the scattering angle from 25° to 130°. The spectrometer will be operational at the ADRESS (advanced resonant spectroscopies) beamline of the Swiss Light Source from 2007.

231 citations


Journal ArticleDOI
TL;DR: Extreme ultraviolet interference lithography (EUV-IL) is a newly developed technique for the production of periodic nano-structures with resolution below 20 nm as discussed by the authors, which is based on coherent radiation that is obtained from undulators at synchrotron radiation laboratories.
Abstract: Extreme ultraviolet interference lithography (EUV-IL) is a newly developed technique for the production of periodic nano-structures with resolution below 20 nm. The technique is based on coherent radiation that is obtained from undulators at synchrotron radiation laboratories. The high resolution is afforded by small wavelength and practical absence of the proximity effect at this energy. The throughput of this parallel exposing method is much higher than that of the serial electron-beam lithography. Interference schemes based on both reflection (mirrors) and diffraction (gratings) optics have been realized. Both one-dimensional and two-dimensional patterns such as arrays of dots have been achieved. Achromatic interference schemes have been developed to make efficient use of the beam power available from the wideband sources in the extreme ultraviolet region. EUV-IL is used in a growing number of applications; examples include fabrication of self-assembly templates, magnetic nanodot arrays and nano-optical components.

197 citations


Journal ArticleDOI
TL;DR: In this article, the use of synchrotron radiation X-ray microtomography rests on the exploitation of the beam coherence, the high spatial (submicron) or temporal resolution (s), in situ and real time experiments and quantitative measurements.

Journal ArticleDOI
TL;DR: At the 1.7-GeV electron storage ring BESSY II, a first source of synchrotron radiation with 100 fs pulse duration, variable (linear and circular) polarization, tunable photon energy, and excellent signal-to-background ratio was constructed and is now in routine operation.
Abstract: At the 1.7-GeV electron storage ring BESSY II, a first source of synchrotron radiation with 100 fs pulse duration, variable (linear and circular) polarization, tunable photon energy (300 to 1400 eV), and excellent signal-to-background ratio was constructed and is now in routine operation.

Journal ArticleDOI
TL;DR: In this paper, the authors show that a more likely source is coherent, electron cyclotron maser emission from the low-density regions above the magnetic poles of the M9 dwarf TVLM 513-46546 at 4.88 and 8.44 GHz.
Abstract: The Very Large Array was used to observe the ultracool rapidly rotating M9 dwarf TVLM 513-46546 simultaneously at 4.88 and 8.44 GHz. The radio emission was determined to be persistent, variable, and periodic at both frequencies with a period of ~2 hr. This periodicity is in excellent agreement with the estimated period of rotation of the dwarf based on its v sin i of ~60 km s^(-1). This rotational modulation places strong constraints on the source size of the radio-emitting region and hence the brightness temperature of the associated emission. We find the resulting high brightness temperature, together with the inherent directivity of the rotationally modulated component of the emission, difficult to reconcile with incoherent gyrosynchrotron radiation. We conclude that a more likely source is coherent, electron cyclotron maser emission from the low-density regions above the magnetic poles. This model requires the magnetic field of TVLM 513-46546 to take the form of a large-scale, stable dipole or multipole with surface field strengths up to at least 3 kG. We discuss a mechanism by which broadband, persistent electron cyclotron maser emission can be sustained in the low-density regions of the magnetospheres of ultracool dwarfs. A second nonvarying, unpolarized component of the emission may be due to depolarization of the coherent electron cyclotron maser emission or, alternatively, incoherent gyrosynchrotron or synchrotron radiation from a population of electrons trapped in the large-scale magnetic field.

Journal ArticleDOI
TL;DR: The electron stretcher ring ELSA as mentioned in this paper was constructed and set up in a separate ring tunnel below the physics institute to accelerate polarised electron beams with energies up to 3.5GeV and high duty factors.
Abstract: In 1953, it was decided to build a 500MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5GeV using superconducting resonators will be investigated.

Journal ArticleDOI
TL;DR: In this paper, a complete set of diagnostic tools aimed at producing synthetic synchrotron emissivity, polarization, and spectral index maps from relativistic MHD simulations is presented.
Abstract: Aims. A complete set of diagnostic tools aimed at producing synthetic synchrotron emissivity, polarization, and spectral index maps from relativistic MHD simulations is presented. As a first application we consider here the case of the emission from Pulsar Wind Nebulae (PWNe). Methods. The proposed method is based on the addition, on top of the basic set of MHD equations, of an extra equation describing the evolution of the maximum energy of the emitting particles. This equation takes into account adiabatic and synchrotron losses along streamlines for the distribution of emitting particles and its formulation is such that it is easily implemented in any numerical scheme for relativistic MHD. Results. Application to the axisymmetric simulations of PWNe, analogous to those described by Del Zanna et al. (2004), allows direct comparison between the numerical results and observations of the inner structure of the Crab Nebula, and similar objects, in the optical and X-ray bands. We are able to match most of the observed features typical of PWNe, like the equatorial torus and the polar jets, with velocities in the correct range, as well as finer emission details, like arcs, rings and the bright knot, that turn out to arise mainly from Doppler boosting effects. Spectral properties appear to be well reproduced too: detailed spectral index maps are produced for the first time and show softening towards the PWN outer borders, whereas spectral breaks appear in integrated spectra. The emission details are found to strongly depend on both the average wind magnetization, here σeff ≈ 0.02, and on the magnetic field shape. Conclusions. Our method, in spite of its simplicity, provides a realistic modeling of synchrotron emission properties, and twodimensional axisymmetric relativistic MHD simulations appear to be well suited to explain the main observational features of PWNe.

Journal ArticleDOI
TL;DR: In this article, the dominant X-ray radiation mechanism changes from thermal to synchrotron emission along the northeastern shell of the supernova remnant RCW 86 using Chandra and XMM-Newton.
Abstract: We report X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 using Chandra and XMM-Newton. Along this part of the shell, the dominant X-ray radiation mechanism changes from thermal to synchrotron emission. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron-emitting region suggest a locally higher shock velocity of Vs ≈ 2700 km s-1 and a magnetic field of B ≈ 24 ± 5 μG. Moreover, we also show that a simple power-law cosmic-ray electron spectrum with an exponential cutoff cannot explain the broadband synchrotron emission. Instead, a concave electron spectrum is needed, as predicted by nonlinear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.

Journal ArticleDOI
TL;DR: In this paper, the design of a new infrared beamline (AILES) at the third generation Synchrotron Radiation Source SOLEIL is presented and the expected performance including flux, spatial distribution of the photons, spectral range and stability are discussed and calculated.

Journal ArticleDOI
TL;DR: In this paper, the authors show that a more likely source is coherent, electron cyclotron maser emission from the low density regions above the magnetic poles of the M9 dwarf TVLM 513-46546 at 4.88 GHz and 8.44 GHz.
Abstract: The Very Large Array was used to observe the ultracool, rapidly rotating M9 dwarf TVLM 513-46546 simultaneously at 4.88 GHz and 8.44 GHz. The radio emission was determined to be persistent, variable and periodic at both frequencies with a period of ~2 hours. This periodicity is in excellent agreement with the estimated period of rotation of the dwarf based on its v sin i of ~60 km/s. This rotational modulation places strong constraints on the source size of the radio emitting region and hence the brightness temperature of the associated emission. We find the resulting high brightness temperature, together with the inherent directivity of the rotationally modulated component of the emission, difficult to reconcile with incoherent gyrosynchrotron radiation. We conclude that a more likely source is coherent, electron cyclotron maser emission from the low density regions above the magnetic poles. This model requires the magnetic field of TVLM 513-46546 to take the form of a large-scale, stable, dipole or multipole with surface field strengths up to at least 3kG. We discuss a mechanism by which broadband, persistent electron cyclotron maser emission can be sustained in the low density regions of the magnetospheres of ultracool dwarfs. A second nonvarying, unpolarized component of the emission may be due to depolarization of the coherent electron cyclotron maser emission or alternatively, incoherent gyrosynchrotron or synchrotron radiation from a population of electrons trapped in the large-scale magnetic field.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the magnetic field created by the internal shocks decays on a length scale much shorter than the comoving width of the plasma, and that synchrotron radiation can reproduce the observed prompt emission spectra of the majority of the bursts.
Abstract: Synchrotron emission is believed to be a major radiation mechanism during gamma-ray bursts' (GRBs) prompt emission phase. A significant drawback of this assumption is that the theoretical predicted spectrum, calculated within the framework of the ``internal shocks'' scenario using the standard assumption that the magnetic field maintains a steady value throughout the shocked region, leads to a slope F_ u \propto u^{-1/2} below 100 keV, which is in contradiction to the much harder spectra observed. This is due to the electrons cooling time being much shorter than the dynamical time. In order to overcome this problem, we propose here that the magnetic field created by the internal shocks decays on a length scale much shorter than the comoving width of the plasma. We show that under this assumption synchrotron radiation can reproduce the observed prompt emission spectra of the majority of the bursts. We calculate the required decay length of the magnetic field, and find it to be \~10^4 - 10^5 cm (equivalent to 10^5 - 10^6 skin depths), much shorter than the characteristic comoving width of the plasma, ~3*10^{9} cm. We implement our model to the case of GRB050820A, where a break at <~ 4 keV was observed, and show that this break can be explained by synchrotron self absorption. We discuss the consequences of the small scale magnetic field scenario on current models of magnetic field generation in shock waves.

Journal ArticleDOI
TL;DR: In this article, it was shown that the magnetic field created by the internal shocks decays on a length scale much shorter than the comoving width of the plasma, which is due to the electron cooling time being much short than the dynamical time.
Abstract: Synchrotron emission is believed to be a major radiation mechanism during gamma-ray bursts' (GRBs) prompt emission phase. A significant drawback of this assumption is that the theoretical predicted spectrum, calculated within the framework of the "internal shocks" scenario using the standard assumption that the magnetic field maintains a steady value throughout the shocked region, leads to a slope Fν ∝ ν-1/2 below 100 keV, which is in contradiction to the much harder spectra observed. This is due to the electron cooling time being much shorter than the dynamical time. In order to overcome this problem, we propose here that the magnetic field created by the internal shocks decays on a length scale much shorter than the comoving width of the plasma. We show that under this assumption synchrotron radiation can reproduce the observed prompt emission spectra of the majority of the bursts. We calculate the required decay length of the magnetic field, and find it to be ~104-105 cm (equivalent to 105-106 skin depths), much shorter than the characteristic comoving width of the plasma, ~3 × 109 cm. We implement our model to the case of GRB 050820A, where a break at 4 keV was observed, and show that this break can be explained by synchrotron self-absorption. We discuss the consequences of the small-scale magnetic field scenario on current models of magnetic field generation in shock waves.

Journal ArticleDOI
TL;DR: In this paper, the authors present the status of the system and discuss some of the discoveries made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.
Abstract: A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300–1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

Journal ArticleDOI
TL;DR: In this paper, simulated images of synchrotron intensity and polarization were presented for a simple, semi-dynamical model of conical shock waves in an astrophysical jet.
Abstract: Simulated images of synchrotron intensity and polarization are presented for a simple, semi-dynamical model of conical shock waves in an astrophysical jet. Earlier work is extended by inclusion of a component of upstream magnetic field parallel to the jet in addition to the tangled (or disordered) component considered in the earlier paper. Results for several cases representing shocks of moderate strength are shown. It is found that the on-axis polarization reflects the upstream magnetic field structure. Off-axis, the electric field of polarization is oblique to the axis and covers a range depending on the shock cone angle and viewing angle. The results are compared with the structure of a bright knot about 0.8 arcsec from the nucleus in the quasar 3C 380, which may be an example of this kind of structure.

Journal ArticleDOI
TL;DR: In this paper, the theory and observations of gamma-ray burst polarization are reviewed and the discriminating power of polarization observations cannot be overestimated, however, due to the weakness of the signal.
Abstract: Synchrotron radiation is considered the dominant emission mechanism in the production of gamma-ray burst photons in the prompt as well as in the afterglow phase. Polarization is a characteristic feature of synchrotron radiation and its study can reveal a wealth of information on the properties of the magnetic field and of the energy distribution in gamma-ray burst jets. In this paper, I will review the theory and observations of gamma-ray burst polarization. While the theory is well established, observations have proven difficult to perform, due to the weakness of the signal. The discriminating power of polarization observations, however, cannot be overestimated.

01 Jan 2006
TL;DR: In this paper, the best micro-tomographic im-ages are obtained using third-generation synchrotrons producing hard X-rays, such as the ESRF, which greatly improves the image contrast andtherefore allow studying fossils that cannot be investigated by conventional microtomography due to a high degree of mineralisationor low absorption contrast.
Abstract: Paleontologists are quite recent newcomers amongthe users of X-ray synchrotron imaging techniques at the Eu-ropean Synchrotron Radiation Facility (ESRF). Studies of theexternal morphological characteristics of a fossil organism arenot sufficient to extract all the information for a paleontolog-ical study. Nowadays observations of internal structures be-come increasingly important, but these observations should benon-destructive in order to preserve the important specimens.Conventional microtomography allows performing part of theseinvestigations. Nevertheless, the best microtomographic im-ages are obtained using third-generation synchrotrons produc-ing hard X-rays, such as the ESRF. Firstly, monochromatisationavoids beam hardening that is frequently strong for paleonto-logical samples. Secondly, the high beam intensity available atsynchrotron radiation sources allows rapid data acquisition atvery high spatial resolutions, resulting in precise mapping ofthe internal structures of the sample. Thirdly, high coherenceleads to additional imaging possibilities: phase contrast radio-graphy, phase contrast microtomography and holotomography.These methods greatlyimprove the imagecontrast andthereforeallow studying fossils that cannot be investigated by conven-tional microtomography due to a high degree of mineralisationor low absorption contrast. Thanks to these different propertiesand imaging techniques, a synchrotron radiation source and theESRF in particular appears as an almost ideal investigation toolfor paleontology.

Journal ArticleDOI
TL;DR: In this paper, the authors extended these models by considering the temporal and spatial evolution of the energy distribution of relativistic electrons as they advect downstream from their shock acceleration site.
Abstract: Radio emission models of colliding wind binaries (CWBs) have been discussed by Dougherty et al. (2003). We extend these models by considering the temporal and spatial evolution of the energy distribution of relativistic electrons as they advect downstream from their shock acceleration site. The energy spectrum evolves significantly due to the strength of inverse-Compton (IC) cooling in these systems, and a full numerical evaluation of the synchrotron emission and absorption coefficients is made. We have demonstrated that the geometry of the WCR and the streamlines of the flow within it lead to a spatially dependent break frequency in the synchrotron emission. We therefore do not observe a single, sharp break in the synchrotron spectrum integrated over the WCR, but rather a steepening of the synchrotron spectrum towards higher frequencies. We also observe that emission from the wind-collision region (WCR) may appear brightest near the shocks, since the impact of IC cooling on the non-thermal electron distribution is greatest near the contact discontinuity (CD), and demonstrate that the impact of IC cooling on the observed radio emission increases significantly with decreasing binary separation. We study how the synchrotron emission changes in response to departures from equipartition, and investigate how the thermal flux from the WCR varies with binary separation. Since the emission from the WCR is optically thin, we see a substantial fraction of this emission at certain viewing angles, and we show that the thermal emission from a CWB can mimic a thermal plus non-thermal composite spectrum if the thermal emission from the WCR becomes comparable to that from the unshocked winds. We demonstrate that the observed synchrotron emission depends upon the viewing angle and the wind-momentum ratio, and find that the observed synchrotron emission decreases as the viewing angle moves through the WCR from the WR shock to the O shock. We obtain a number of insights relevant to models of closer systems such as WR 140. Finally, we apply our new models to the very wide system WR 147. The acceleration of non-thermal electrons appears to be very efficient in our models of WR 147, and we suggest that the shock structure may be modified by feedback from the accelerated particles.

Journal ArticleDOI
TL;DR: In this paper, a multifrequency observing campaign targeting S5 0716+71 was carried out under the framework of the European Network for the Investigation of Galactic nuclei through Multifrequency Analysis (ENIGMA) together with a campaign by the Whole Earth Blazar Telescope (WEBT), involving a pointing by the soft-gamma-ray satellite INTEGRAL, optical, near-infrared, sub-millimeter, millimeter, radio, and very long baseline array (VLBA) monitoring.
Abstract: Some intra-day variable, compact extra-galactic radio sources show brightness temperatures severely exceeding 10^{12} K, the limit set by catastrophic inverse-Compton (IC) cooling in sources of incoherent synchrotron radiation. The violation of the IC limit, possible under non-stationary conditions, would lead to IC avalanches in the soft-gamma-ray energy band during transient periods. For the first time, broadband signatures of possible IC catastrophes were searched for in S5 0716+71. A multifrequency observing campaign targetting S5 0716+71 was carried out in November 2003 under the framework of the European Network for the Investigation of Galactic nuclei through Multifrequency Analysis (ENIGMA) together with a campaign by the Whole Earth Blazar Telescope (WEBT), involving a pointing by the soft-gamma-ray satellite INTEGRAL, optical, near-infrared, sub-millimeter, millimeter, radio, and Very Long Baseline Array (VLBA) monitoring. S5 0716+71 was very bright at radio frequencies and in a rather faint optical state during the INTEGRAL pointing; significant inter-day and low intra-day variability was recorded in the radio regime, while typical fast variability features were observed in the optical band. No correlation was found between the radio and optical emission. The source was not detected by INTEGRAL, neither by the X-ray monitor JEM-X nor by the gamma-ray imager ISGRI, but upper limits to the source emission in the 3-200 keV energy band were estimated. A brightness temperature Tb>2.1x10^{14} K was inferred from the radio variability, but no corresponding signatures of IC avalanches were recorded at higher energies. The absence of IC-catastrophe signatures provides either a lower limit delta>8 to the Doppler factor affecting the radio emission or strong constraints for modelling of the Compton catastrophes in S5 0716+71.

Journal ArticleDOI
TL;DR: In this article, the authors compare the measured spatial resolutions available with each of these detector types for globar and synchrotron sources as a function of wavelength and optical configuration.

Journal ArticleDOI
TL;DR: In this article, the first setup and experimental verification of terahertz frequency domain magneto-optic generalized ellipsometry with synchrotron and conventional blackbody radiation sources was reported.
Abstract: We report on the first setup and experimental verification of terahertz frequency domain magneto-optic generalized ellipsometry using a combination of highly brilliant terahertz synchrotron and conventional blackbody radiation sources. The polarizer-sample-rotating-analyzer ellipsometry principle is employed to measure the three normalized Stokes vector elements excluding depolarization information, and the upper left 3×3 block of the normalized 4×4 Mueller matrix accordingly for wave numbers from 30to650cm−1 (0.9–20THz). We discuss setup, measurement, and data analysis procedures specific to the use of synchrotron radiation for terahertz ellipsometry. Two sample systems with different free-charge-carrier properties were studied and are presented here to illustrate terahertz ellipsometry and data analysis. The first example is low-chlorine-doped ZnMnSe, a dilute magnetic semiconductor. Analysis of the normalized Mueller matrix elements using the Drude magneto-optic dielectric function tensor model over th...

Journal ArticleDOI
TL;DR: In this paper, a characterisation of ZnMoO 4 using spectroscopic techniques was presented, where reflection, luminescence, and luminecence excitation spectra were measured over the temperature range 8-295 K using VUV synchrotron radiation.
Abstract: In this paper we present a characterisation of ZnMoO 4 using spectroscopic techniques. Reflection, luminescence and luminescence excitation spectra were measured over the temperature range 8–295 K using VUV synchrotron radiation. The emission spectrum of the crystal exhibits a broad band with a maximum around 1.95 eV at 80 K that is attributed to the radiative transitions within MO 4 2− oxyanion complex. An interpretation of the observed features of the electronic excitations in the crystal is given based on present knowledge of the electronic structure and emission properties of molybdate crystals. The results of this study suggest that ZnMoO 4 is a suitable candidate for further testing for implementation as a target material in cryogenic scintillation searches for rare events.

Journal ArticleDOI
TL;DR: An undulator-based beamline, with a high-resolution spherical-grating monochromator (SGM), is connected to the atomic and molecular physics end-station for studying the spectroscopy and dynamics of atoms, molecules and clusters.
Abstract: At the National Synchrotron Radiation Laboratory, The University of Science and Technology of China, an atomic and molecular physics beamline with an energy range of 7.5-124 eV has been constructed for studying the spectroscopy and dynamics of atoms, molecules and clusters. The undulator-based beamline, with a high-resolution spherical-grating monochromator (SGM), is connected to the atomic and molecular physics end-station. This end-station includes a main experimental chamber for photoionization studies and an additional multi-stage photoionization chamber for photoabsorption spectroscopy. A mid-photon flux of 5 x 10(12) photons s(-1) and a high resolving power is provided by this SGM beamline in the energy range 7.5-124 eV. The size of the synchrotron radiation beam spot at the sample is about 0.5 mm in the vertical direction and 1.0 mm in the horizontal direction. Some experimental results of photoionization efficiency spectroscopy and photoabsorption spectroscopy of atoms and molecules are also reported.