scispace - formally typeset
Search or ask a question

Showing papers on "Transpiration published in 2012"


Journal ArticleDOI
TL;DR: This review first describes present knowledge about how water is taken up by roots and then discusses how specific stress situations such as drought, salinity, low temperature, and flooding modify root water uptake.
Abstract: A common effect of several abiotic stresses is to cause tissue dehydration. Such dehydration is caused by the imbalance between root water uptake and leaf transpiration. Under some specific stress conditions, regulation of root water uptake is more crucial to overcome stress injury than regulation of leaf transpiration. This review first describes present knowledge about how water is taken up by roots and then discusses how specific stress situations such as drought, salinity, low temperature, and flooding modify root water uptake. The rate of root water uptake of a given plant is the result of its root hydraulic characteristics, which are ultimately regulated by aquaporin activity and, to some extent, by suberin deposition. Present knowledge about the effects of different stresses on these features is also summarized. Finally, current findings regarding how molecular signals such as the plant hormones abscisic acid, ethylene, and salicylic acid, and how reactive oxygen species may modulate the final response of root water uptake under stress conditions are discussed.

485 citations


Journal ArticleDOI
TL;DR: In this paper, the role of evapotranspiration in the global, continental, regional, and local water cycles is reviewed, and a mathematical closure that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed.
Abstract: [1] The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical “closure” that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

436 citations


Journal ArticleDOI
TL;DR: This review gathers estimates of the magnitude of HR from ecosystems around the world, using representative empirical and modeling studies from which the authors could extract amounts of water redistributed by plant root systems and takes both ecological and hydrologic perspectives.
Abstract: Contents Summary 337 I. Introduction 337 II. Synthesis of the magnitudes of HR across ecosystems 338 III. Hydraulic redistribution models 339 IV. Methodological considerations affecting the magnitude of HR 344 V. Site characteristics affecting the magnitude of HR 346 VI. Plant characteristics affecting the magnitude of HR 347 VII. Conclusions 349 Acknowledgements 350 References 350 Summary Hydraulic redistribution (HR) – the movement of water from moist to dry soil through plant roots – occurs worldwide within a range of different ecosystems and plant species. The proposed ecological and hydrologic impacts of HR include increasing dry-season transpiration and photosynthetic rates, prolonging the life span of fine roots and maintaining root–soil contact in dry soils, and moving rainwater down into deeper soil layers where it does not evaporate. In this review, we compile estimates of the magnitude of HR from ecosystems around the world, using representative empirical and modeling studies from which we could extract amounts of water redistributed by plant root systems. The reported average magnitude of HR varies by nearly two orders of magnitude across ecosystems, from 0.04 to 1.3 mm H2O d−1 in the empirical literature, and from 0.1 to 3.23 mm H2O d−1 in the modeling literature. Using these synthesized data, along with other published studies, we examine this variation in the magnitude of upward and downward HR, considering effects of plant, soil and ecosystem characteristics, as well as effects of methodological details (in both empirical and modeling studies) on estimates of HR. We take both ecological and hydrologic perspectives.

275 citations


Journal ArticleDOI
TL;DR: The growth of EPF2-overexpressing plants was also less adversely affected by reduced water availability than plants with higher D, indicating that plants with low D may be well suited to growth under predicted future atmospheric CO2 environments and/or water-scarce environments.
Abstract: To investigate the impact of manipulating stomatal density, a collection of Arabidopsis epidermal patterning factor (EPF) mutants with an approximately 16-fold range of stomatal densities (approx 20-325% of that of control plants) were grown at three atmospheric carbon dioxide (CO(2)) concentrations (200, 450 and 1000 ppm), and 30 per cent or 70 per cent soil water content A strong negative correlation between stomatal size (S) and stomatal density (D) was observed, suggesting that factors that control D also affect S Under some but not all conditions, mutant plants exhibited abnormal stomatal density responses to CO(2) concentration, suggesting that the EPF signalling pathway may play a role in the environmental adjustment of D In response to reduced water availability, maximal stomatal conductance was adjusted through reductions in S, rather than D Plant size negatively correlated with D For example, at 450 ppm CO(2) EPF2-overexpressing plants, with reduced D, had larger leaves and increased dry weight in comparison with controls The growth of these plants was also less adversely affected by reduced water availability than plants with higher D, indicating that plants with low D may be well suited to growth under predicted future atmospheric CO(2) environments and/or water-scarce environments

258 citations


Journal ArticleDOI
TL;DR: The surprising finding that Arabidopsis plants developed at high temperature (28°C) show increased water loss and enhanced leaf cooling capacity in these conditions, despite producing fewer leaf surface pores (stomata) is presented.

245 citations


Journal ArticleDOI
TL;DR: Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal, with significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation.
Abstract: Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status and mycorrhizal responsiveness) of Boswellia papyrifera seedlings. A continuous precipitation regime was imitated by continuous watering of plants to field capacity every other day during 4 months, and irregular precipitation by pulsed watering of plants where watering was switched every 15 days during these 4 months, with 15 days of watering followed by 15 days without watering. There were significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation. Mycorrhizal seedlings had higher biomass than control seedlings. Stomatal conductance and phosphorus mass fraction in shoot and root were also significantly higher for mycorrhizal seedlings. Mycorrhizal seedlings under irregular watering had the highest biomass. Both a larger leaf area and higher assimilation rates contributed to higher biomass. Under irregular watering, the water use efficiency increased in non-mycorrhizal seedlings through a reduction in transpiration, while in mycorrhizal seedlings irregular watering increased transpiration. Because assimilation rates increased even more, mycorrhizal seedlings achieved an even higher water use efficiency. Boswellia seedlings allocated almost all carbon to the storage root. Boswellia seedlings had higher mass fractions of N, P, and K in roots than in shoots. Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2258-3) contains supplementary material, which is available to authorized users.

219 citations


Journal ArticleDOI
TL;DR: The advantages and disadvantages of these two water-usage strategies and their effects on the plant’s ability to tolerate abiotic and biotic stress are discussed.
Abstract: Water scarcity is a critical limitation for agricultural systems. Two different water management strategies have evolved in plants: an isohydric strategy and an anisohydric strategy. Isohydric plants maintain a constant midday leaf water potential (Ψleaf) when water is abundant, as well as under drought conditions, by reducing stomatal conductance as necessary to limit transpiration. Anisohydric plants have more variable Ψleaf and keep their stomata open and photosynthetic rates high for longer periods, even in the presence of decreasing leaf water potential. This risk-taking behavior of anisohydric plants might be beneficial when water is abundant, as well as under moderately stressful conditions. However, under conditions of intense drought, this behavior might endanger the plant. We will discuss the advantages and disadvantages of these two water-usage strategies and their effects on the plant's ability to tolerate abiotic and biotic stress. The involvement of plant tonoplast AQPs in this process will also be discussed.

217 citations


Journal ArticleDOI
TL;DR: It is found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response, and only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.
Abstract: Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.

201 citations


Journal ArticleDOI
TL;DR: The ability of AM plants to switch between water transport pathways could allow a higher flexibility in the response of these plants to water shortage according to the demand from the shoot.

199 citations


Journal ArticleDOI
TL;DR: Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes, and suberization and compaction of sclerenchyma layer cells decreased under drought, whereassuberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions and retention of water under drought.
Abstract: Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp r) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.

194 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory, and concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D.
Abstract: Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured) was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d?1 into 0.4 mm d?1 for soil evaporation, 0.3 mm d?1 for interception and 2.6 mm d?1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d?1 into 1 mm d?1 for soil evaporation, 0.3 mm d?1 for interception and 2.3 mm d?1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.

Journal ArticleDOI
TL;DR: It is hypothesized that excessive demand for water transport associated with low CO2, high light and temperature would have selected for C4 photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism.
Abstract: C4 photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C3 photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C4 than C3 type under atmospheric CO2 depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant–water relations. We hypothesize that excessive demand for water transport associated with low CO2, high light and temperature would have selected for C4 photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C4 pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO2. The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C4 photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO2 declined and ecological demand for water rose.

Journal ArticleDOI
TL;DR: In this article, the effect of added silicon (Si, as sodium silicate) on water status-related parameters, osmolytes accumulation and gas exchange in the leaves of hydroponically grown upland rice seedlings under polyethylene glycol (PEG-6000)-induced water stress was investigated.
Abstract: This study investigates the effect of added silicon (Si, as sodium silicate) on water status–related parameters, osmolytes accumulation and gas exchange in the leaves of hydroponically grown upland rice seedlings under polyethylene glycol (PEG-6000)-induced water stress, the aims being to explore whether Si has been involved in osmotic adjustment (OA) in upland rice plants. Fifty-five-day-old seedlings were subjected to 8.5 % (m/v) PEG-6000 treatment without or with 2.5 mm Si for 7 days. The results showed that addition of Si to culture solution could partially improve total, free, and bound water contents in both leaves and roots, which were all decreased under water stress. Application of Si increased water potential (Ψw) and osmotic potential (Ψπ) in both roots and leaves while maintained higher turgor pressure (Ψp), in comparison with the plants without Si application. Added Si also stimulated the active accumulation of some osmolytes in both leaves and roots of stressed plants, which suggested enhanced OA ability. Analysis of gas exchange in leaves showed that net photosynthetic rate, transpiration, and water-use efficiency (WUE) were decreased under water stress, whereas application of Si enhanced the photosynthesis and improved the WUE. This study suggests that PEG-induced water stress in rice could be partially alleviated by addition of Si. This alleviative effect was partially attributable to enhanced OA ability by means of active accumulation of osmolytes.

Journal ArticleDOI
TL;DR: The genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr is investigated, finding that Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by theRootstock, through different genetic architectures.
Abstract: The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon x Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined delta C-13 values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.

Journal ArticleDOI
TL;DR: In this paper, the influence of the temporal patterns in rainfall (P) on the dynamic contributions of tree transpiration (Tt), soil evaporation (Es) and rainfall interception (IP) to total evapotranspiration (ET) partitioning in a semi-arid pine forest was examined.

Journal ArticleDOI
TL;DR: Clear relationships emerged between K(leaf_mass), P(50), and leaf mass per unit area (LMA), suggesting that increased tolerance to hydraulic dysfunction implies increased carbon costs for leaf construction and water use.
Abstract: Leaf hydraulic conductance (K(leaf) ) and vulnerability constrain plant productivity, but no clear trade-off between these fundamental functional traits has emerged in previous studies. We measured K(leaf) on a leaf area (K(leaf_area)) and mass basis (K(leaf_mass)) in six woody angiosperms, and compared these values with species' distribution and leaf tolerance to dehydration in terms of P(50), that is, the leaf water potential inducing 50% loss of K(leaf) . We also measured several morphological and anatomical traits associated with carbon investment in leaf construction and water transport efficiency. Clear relationships emerged between K(leaf_mass), P(50), and leaf mass per unit area (LMA), suggesting that increased tolerance to hydraulic dysfunction implies increased carbon costs for leaf construction and water use. Low P(50) values were associated with narrower and denser vein conduits, increased thickness of conduit walls, and increased vein density. This, in turn, was associated with reduced leaf surface area. Leaf P(50) was closely associated with plants' distribution over a narrow geographical range, suggesting that this parameter contributes to shaping vegetation features. Our data also highlight the carbon costs likely to be associated with increased leaf tolerance to hydraulic dysfunction, which confers on some species the ability to thrive under reduced water availability but decreases their competitiveness in high-resource habitats.

Journal ArticleDOI
TL;DR: This work introduces equations to take ternary effects of transpiration rate into account, and shows that this partially reconciles estimates of the oxygen isotopic composition of CO(2) in the chloroplast and mitochondria in the light and in the dark, with values close to equilibrium with the estimated oxygen isotopes at the sites of evaporation within the leaf.
Abstract: The ternary effects of transpiration rate on the rate of assimilation of carbon dioxide through stomata, and on the calculation of the intercellular concentration of carbon dioxide, are now included in standard gas exchange studies. However, the equations for carbon isotope discrimination and for the exchange of oxygen isotopologues of carbon dioxide ignore ternary effects. Here we introduce equations to take them into account. The ternary effect is greatest when the leaf-to-air vapour mole fraction difference is greatest, and its impact is greatest on parameters derived by difference, such as the mesophyll resistance to CO2 assimilation, rm. We show that the mesophyll resistance to CO2 assimilation has been underestimated in the past. The impact is also large when there is a large difference in isotopic composition between the CO2 inside the leaf and that in the air. We show that this partially reconciles estimates of the oxygen isotopic composition of CO2 in the chloroplast and mitochondria in the light and in the dark, with values close to equilibrium with the estimated oxygen isotopic composition of water at the sites of evaporation within the leaf.

Journal ArticleDOI
TL;DR: In this article, two versions of the TSEB were evaluated, where a single TR measurement was used (TSEB-TR) and separate measurements of soil (TS) and canopy (TC) surface temperatures were used to solve the energy budgets of these layers separately.

Journal ArticleDOI
TL;DR: In this article, the effects of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves were investigated in field drought conditions, and both stomatal and non-stomatal factors were involved in the regulation.
Abstract: The effects of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat (Triticum aestivum L.) leaves were investigated in field drought conditions. Silicon application improved the leaf relative water content and water potential under drought. The leaf net photosynthetic rate and stomatal conductance were significantly decreased between 7:30 and 17:30 under drought, whereas silicon application increased the leaf net photosynthetic rate between 7:30 and 15:30 with an exception at 9:30. Silicon application also increased the leaf stomatal conductance at 13:30 and 17:30 under drought. The leaf transpiration rate was decreased by drought but it was increased by silicon from 13:30 to 17:30. The intercellular CO2 concentration was increased at 7:30 under drought, while it was decreased most of the time from midday to the afternoon. The leaf stomatal limitation was increased under drought from 11:30 to 17:30, whereas it was intermediate in silicon treated plants. The instantaneous water use efficiency was significantly increased by silicon application at 7:30 under drought. Silicon application slightly decreased the activity of ribulose-1, 5-bisphosphate carboxylase, but it increased the activity of phosphoenolpyruvate carboxylase and the concentration of inorganic phosphorus under drought. These results suggest that silicon could improve the photosynthetic ability of wheat in field drought conditions, and both stomatal and non-stomatal factors were involved in the regulation. In the early morning (at 7:30), the non-stomatal factor was the main contributor; 9:30 was a turning point, after which the stomatal factor was the main contributor.

Journal ArticleDOI
TL;DR: It is demonstrated that in well-watered conditions, stomatal conductance is a major determinant of photosynthetic rate in rice.
Abstract: In rice (Oryza sativa L.), leaf photosynthesis is known to be highly correlated with stomatal conductance; however, it remains unclear whether stomatal conductance dominantly limits the photosynthetic rate. SLAC1 is a stomatal anion channel protein controlling stomatal closure in response to environmental [CO2]. In order to examine stomatal limitations to photosynthesis, a SLAC1-deficient mutant of rice was isolated and characterized. A TILLING screen of N-methyl-N-nitrosourea-derived mutant lines was conducted for the rice SLAC1 orthologue gene Os04g0674700, and four mutant lines containing mutations within the open reading frame were obtained. A second screen using an infrared thermography camera revealed that one of the mutants, named slac1, had a constitutive low leaf temperature phenotype. Measurement of leaf gas exchange showed that slac1 plants grown in the greenhouse had significantly higher stomatal conductance (g s), rates of photosynthesis (A), and ratios of internal [CO2] to ambient [CO2] (C i/C a) compared with wild-type plants, whereas there was no significant difference in the response of photosynthesis to internal [CO2] (A/C i curves). These observations demonstrate that in well-watered conditions, stomatal conductance is a major determinant of photosynthetic rate in rice.


Journal ArticleDOI
TL;DR: In this article, the response of transpiration rate to changes in atmospheric VPD was measured at two different temperatures in a growth chamber, and the effect of growth temperature on transpiration was evident when plants were grown at low temperature (22/18°C) and measured at higher temperature (30°C).

Journal ArticleDOI
TL;DR: Findings indicate that SYP121 facilitates stomatal reopening and suggest that K⁺ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata, which underline the significance of vesicle traffic for whole-plant water use and biomass production.
Abstract: The vesicle-trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss-of-function mutant close normally in ABA and high Ca²⁺. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO₂ assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca²⁺-evoked closure, consistent with a constitutive form of so-called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild-type SYP121 and was phenocopied in wild-type plants in the presence of the vesicle-trafficking inhibitor Brefeldin A. K⁺ channel current that normally mediates K⁺ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild-type plants. Evoked stomatal closure was accompanied by internalisation of GFP-tagged KAT1 K⁺ channels in both wild-type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K⁺ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole-plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.

Journal ArticleDOI
TL;DR: The dual-isotope approach appears to be valid conceptually, but more work is needed to make it operational under different scenarios to provide a clear way to interpret variation in carbon isotope discrimination.
Abstract: Seedlings of a conifer (Pinus radiata D. Don) and a broad leaf angiosperm (Eucalyptus globulus Labill.) were grown for 100 days in two growth cabinets at 45 or 65% relative humidity. The seedlings were exposed to treatments designed to modify carbon assimilation rates and capacities, stomatal conductance and transpiration to test conceptual models that attempt to clarify the interpretation of carbon isotope discrimination (Δ 13 C) by using oxygen isotope enrichment (Δ 18 O). Differences in relative humidity and within-cabinet treatments (including lower irradiance, lower nitrogen inputs, higher leaf temperature and lower moisture status than control seedlings) produced significant differences in assimilation rates, photosynthetic capacities, stomatal conductance, leaf transpiration rates and leaf evaporative enrichment. The dual-isotope approach accurately interpreted the cause of variation in wood cellulose Δ 13 C for some of the treatments, but not for others. We also tested whether we could use Δ 13 C variation to constrain the interpretation of δ 18 O variation. Carbon isotope discrimination appears to be influenced by transpiration (providing information on leaf evaporative enrichment), but the results did not provide a clear way to interpret such variation. The dual-isotope approach appears to be valid conceptually, but more work is needed to make it operational under different scenarios.

Journal ArticleDOI
TL;DR: It is concluded that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential.
Abstract: Stomatal guard cells regulate plant photosynthesis and transpiration. Central to the control of seed plant stomatal movement is the phytohormone abscisic acid (ABA); however, differences in the sensitivity of guard cells to this ubiquitous chemical have been reported across land plant lineages. Using a phylogenetic approach to investigate guard cell control, we examined the diversity of stomatal responses to endogenous ABA and leaf water potential during water stress. We show that although all species respond similarly to leaf water deficit in terms of enhanced levels of ABA and closed stomata, the function of fern and lycophyte stomata diverged strongly from seed plant species upon rehydration. When instantaneously rehydrated from a water-stressed state, fern and lycophyte stomata rapidly reopened to predrought levels despite the high levels of endogenous ABA in the leaf. In seed plants under the same conditions, high levels of ABA in the leaf prevented rapid reopening of stomata. We conclude that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential. These results support a gradualistic model of stomatal control evolution, offering opportunities for molecular and guard cell biochemical studies to gain further insights into stomatal control.

Journal ArticleDOI
TL;DR: Investigation of grapevine varieties in Australia suggests that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augmentStomatal responsiveness to low VPD.
Abstract: Stomatal responsiveness to evaporative demand (air vapour pressure deficit (VPD)) ranges widely between species and cultivars, and mechanisms for stomatal control in response to VPD remain obscure. The interaction of irrigation and soil moisture with VPD on stomatal conductance is particularly difficult to predict, but nevertheless is critical to instantaneous transpiration and vulnerability to desiccation. Stomatal sensitivity to VPD and soil moisture was investigated in Semillon, an anisohydric Vitis vinifera L. variety whose leaf water potential (Ψ(l)) is frequently lower than that of other grapevine varieties grown under similar conditions in the warm grape-growing regions of Australia. A survey of Semillon vines across seven vineyards revealed that, regardless of irrigation treatment, midday Ψ(l) was dependent on not only soil moisture but VPD at the time of measurement. Predawn Ψ(l) was more closely correlated to not only soil moisture in dry vineyards but to night-time VPD in drip-irrigated vineyards, with incomplete rehydration during high night-time VPD. Daytime stomatal conductance was low only under severe plant water deficits, induced by extremes in dry soil. Stomatal response to VPD was inconsistent across irrigation regime; however, in an unirrigated vineyard, stomatal sensitivity to VPD-the magnitude of stomatal response to VPD-was heightened under dry soils. It was also found that stomatal sensitivity was proportional to the magnitude of stomatal conductance at a reference VPD of 1kPa. Exogenous abscisic acid (ABA) applied to roots of Semillon vines growing in a hydroponic system induced stomatal closure and, in field vines, petiole xylem sap ABA concentrations rose throughout the morning and were higher in vines with low Ψ(l). These data indicate that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augment stomatal responsiveness to low VPD.

Journal ArticleDOI
TL;DR: This study shows how silvicultural treatments can be used to modify stand transpiration and AGB-WUE of E. nitens plantations, potentially reducing their drought susceptibility while making more efficient use of the sites water resources.

Journal ArticleDOI
TL;DR: The results could potentially be used in breeding programmes through marker-assisted selection to improve drought tolerance and photosynthesis simultaneously.
Abstract: Photosynthesis is fundamental to biomass production, but sensitive to drought. To understand the genetics of leaf photosynthesis, especially under drought, upland rice cv. Haogelao, lowland rice cv. Shennong265, and 94 of their introgression lines (ILs) were studied at flowering and grain filling under drought and well-watered field conditions. Gas exchange and chlorophyll fluorescence measurements were conducted to evaluate eight photosynthetic traits. Since these traits are very sensitive to fluctuations in microclimate during measurements under field conditions, observations were adjusted for microclimatic differences through both a statistical covariant model and a physiological approach. Both approaches identified leaf-to-air vapour pressure difference as the variable influencing the traits most. Using the simple sequence repeat (SSR) linkage map for the IL population, 1‐3 quantitative trait loci (QTLs) were detected per trait‐stage‐treatment combination, which explained between 7.0% and 30.4% of the phenotypic variance of each trait. The clustered QTLs near marker RM410 (the interval from 57.3 cM to 68.4 cM on chromosome 9) were consistent over both development stages and both drought and wellwatered conditions. This QTL consistency was verified by a greenhouse experiment under a controlled environment. The alleles from the upland rice at this interval had positive effects on net photosynthetic rate, stomatal conductance, transpiration rate, quantum yield of photosystem II (PSII), and the maximum efficiency of lightadapted open PSII. However, the allele of another main QTL from upland rice was associated with increased drought sensitivity of photosynthesis. These results could potentially be used in breeding programmes through markerassisted selection to improve drought tolerance and photosynthesis simultaneously.

Journal ArticleDOI
TL;DR: It is recommended that water deficits or reduced irrigation, and 55% water field capacity, be considered for irrigation scheduling before the maize tasseling stage in neutral loam, meadow soil for sub-humid regions under water limited conditions.
Abstract: The aim of this study was to explore the effects of water stress on the growth, biomass partitioning, and water-use efficiency (WUE) of summer maize (Zea mays L.) throughout the growth cycle. Maize field trials were conducted under a completely randomized design with three field water capacity (FC) regimes. Water was delivered to plants as follows: 75% FC was considered low water stress and the control, 55% FC medium stress, and 35% FC high stress. The controlled irrigation was initiated from the third leaf stage until maturity. The results of 2 years of field trials indicated that maize development and grain yield responses to water stress depended on the severity of stress, including intensity and duration, but also on maize developmental stage. Medium water stress (55%) affected leaf area at the seventeenth (V17) leaf stage, tasseling and silking emergence, leaf extension, and final leaf number to a minor degree. However, 55% FC significantly decreased plant height, leaf area (except for V17), stem diameter, biomass accumulation, net photosynthesis and transpiration rates at different developmental stages. In particular, tasseling and silking, and yield parameters, including ear kernel number and 100-kernel dry weight decreased with increasing medium water stress duration. Severe water stress (35% FC) exhibited increased detrimental effects on all vegetative and yield parameters at different development stages, and resulted in a maturation period delay. Severe stress caused notable reductions in WUE at vegetative and reproductive stages, whereas moderate stress resulted in WUE increases at early and middle stages, and significant decreased WUE at late stages. Overall, these results collectively showed that the negative effects of 2 years of high stress conditions (35% FC) on maize plants were evident in vegetative and yield parameters. We recommend that water deficits or reduced irrigation, and 55% water field capacity, be considered for irrigation scheduling before the maize tasseling stage in neutral loam, meadow soil for sub-humid regions under water limited conditions.

Journal ArticleDOI
TL;DR: The results of Zhang et al. (2012) indicated that under limited soil moisture the decrease in gs with increasing D was proportional to reference gs (gs at D = 1 kPa); which is in agreement with the stomata-sensitivity model developed by Oren et al., (1999).
Abstract: Due to the diurnal and seasonal fluctuations in leaf-to-air vapor pressure deficit (D), one of the key regulatory roles played by stomata is to limit transpiration-induced leaf water deficit. Different types of plants are known to vary in the sensitivity of stomatal conductance (gs) to D with important consequences for their survival and growth. Plants that minimize any increase in transpiration with increasing D have a tight stomatal regulation of a constant minimum leaf water potential (Ψleaf); these plants are termed as ‘isohydric’ (Stocker 1956). Plants that have less control of Ψleaf have been termed as ‘anisohydric’ (Tardieu and Simonneau 1998). Isohydric plants maintain a constant Ψleaf by reducing gs and transpiration under drought stress. Therefore, as drought pushes soil water potential (Ψsoil) below this Ψleaf set point, the plant can no longer extract water for gas exchange. Anisohydric plants allow Ψleaf to decrease with rising D, reaching a much lower Ψleaf in droughted plants relative to well-watered plants (Tardieu and Simonneau 1998), so this strategy produces a gradient between Ψsoil and Ψleaf that allows gas exchange to continue over a greater decline in Ψsoil. Thus, anisohydric plants sustain longer periods of transpiration and photosynthesis, even under large soil water deficit, and are thought to be more drought tolerant than isohydric species (McDowell 2011). In practice, the distinctions between isohydric and anisohydric strategies are often not clear (Franks et al. 2007), even among different cultivars of the same species. For example, cultivars of poplar (Hinckley et al. 1994) and grapevine (Schultz 2003, Lovisolo et al. 2010) have been shown to exhibit both contrasting hydraulic behaviors. A third mode of behavior was also suggested by Franks et al. (2007), in which the difference between soil and midday water potential (Ψsoil − Ψleaf) is maintained seasonally constant but Ψleaf fluctuates in synchrony with soil water availability (isohydrodynamic behavior). The lack of a clear distinction between these two strategies and the complex and variable responses of stomata to D under high and low soil moisture is depicted in two papers in this issue (Rogiers et al. 2012 and Zhang et al. 2012), showing that even typically anisohydric grape (Vitis vinifera L.) cultivars (Semillon and Merlot, respectively) may constrain gs during periods of extremely low Ψsoil. The same individuals can switch from an isohydric-like behavior when transpiration is low to an anisohydric-like behavior with increasing water demand. Interestingly, both studies indicated that classifying species as either isohydric or anisohydric is a simplistic view of stomatal functioning and does not represent well the complex stomatal behavior under drying soil, and Zhang et al. (2012) also reported an isohydrodynamic behavior. Both studies suggested that when soil water is limited, gs is aimed at protecting the integrity of the hydraulic system, whereas as soil water content increases, stomata regulate transpiration less. The results of Zhang et al. (2012) indicated that under limited soil moisture the decrease in gs with increasing D was proportional to reference gs (gs at D = 1 kPa); which is in agreement with the stomata-sensitivity model developed by Oren et al. (1999) for isohydric species (see xeric line in Figure 1A). However, a significant departure from this theoretical model was observed under high soil moisture (see wet and mesic lines in Figure 1B). Similarly, in this issue Rogiers et al. (2012) showed that under Tree Physiology 32, 245–248 doi:10.1093/treephys/tps013