scispace - formally typeset
Search or ask a question

Showing papers by "Bas Teusink published in 2018"


Posted ContentDOI
21 Jun 2018-bioRxiv
TL;DR: For example, Memote as mentioned in this paper is an open-source software containing a community-maintained, standardized set of metabolic model tests, which can be extended to include experimental datasets for automatic model validation.
Abstract: Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed. Here, we present memote (https://github.com/opencobra/memote) an open-source software containing a community-maintained, standardized set of metabolic model tests. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model9s performance parameters, which supports informed model development and facilitates error detection. Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.

59 citations


Journal ArticleDOI
TL;DR: The theoretical results provide a novel reason for the presence of low-affinity transport systems, and propose that for uptake by facilitated diffusion, at saturating substrate concentrations, lowering the affinity enhances the net uptake rate by reducing substrate efflux.
Abstract: Many organisms have several similar transporters with different affinities for the same substrate. Typically, high-affinity transporters are expressed when substrate is scarce and low-affinity ones when it is abundant. The benefit of using low instead of high-affinity transporters remains unclear, especially when additional nutrient sensors are present. Here, we investigate two hypotheses. It was previously hypothesized that there is a trade-off between the affinity and the catalytic efficiency of transporters, and we find some but no definitive support for it. Additionally, we propose that for uptake by facilitated diffusion, at saturating substrate concentrations, lowering the affinity enhances the net uptake rate by reducing substrate efflux. As a consequence, there exists an optimal, external-substrate-concentration dependent transporter affinity. A computational model of Saccharomyces cerevisiae glycolysis shows that using the low affinity HXT3 transporter instead of the high affinity HXT6 enhances the steady-state flux by 36%. We tried to test this hypothesis with yeast strains expressing a single glucose transporter modified to have either a high or a low affinity. However, due to the intimate link between glucose perception and metabolism, direct experimental proof for this hypothesis remained inconclusive. Still, our theoretical results provide a novel reason for the presence of low-affinity transport systems.

34 citations


Journal ArticleDOI
TL;DR: Those aspects of current single-cell systems biology discussed, including which molecule concentration fluctuations cause emergent fluctuations in the phenotype of a single cell, how extensive fluctuation propagation is, and what its effects on fitness are are are discussed.

22 citations


Journal ArticleDOI
TL;DR: It is derived that maximal metabolic flux can be maintained in the face of varying N environmental parameters only if the number of transcription-factor binding metabolites is at least equal to N.
Abstract: One of the marvels of biology is the phenotypic plasticity of microorganisms. It allows them to maintain high growth rates across conditions. Studies suggest that cells can express metabolic enzymes at tuned concentrations through adjustment of gene expression. The associated transcription factors are often regulated by intracellular metabolites. Here we study metabolite-mediated regulation of metabolic-gene expression that maximises metabolic fluxes across conditions. We developed an adaptive control theory, qORAC (for ‘Specific Flux (q) Optimization by Robust Adaptive Control’), and illustrate it with several examples of metabolic pathways. The key feature of the theory is that it does not require knowledge of the regulatory network, only of the metabolic part. We derive that maximal metabolic flux can be maintained in the face of varying N environmental parameters only if the number of transcription-factor binding metabolites is at least equal to N. The controlling circuits appear to require simple biochemical kinetics. We conclude that microorganisms likely can achieve maximal rates in metabolic pathways, in the face of environmental changes.

16 citations


Journal ArticleDOI
TL;DR: A novel plant-niche-related PTS component Llmg_0963 forming a hybrid transporter Llmg-0963PtcBA and a glucose/mannose-specific PTS are shown to be involved in galactose transport in L. lactis MG1363.
Abstract: Since the 1970s, galactose metabolism in Lactococcus lactis has been in debate. Different studies led to diverse outcomes making it difficult to conclude whether galactose uptake was PEP- or ATP- dependent and decide what the exact connection was between galactose and lactose uptake and metabolism. It was shown that some Lactococcus strains possess two galactose-specific systems - a permease and a PTS, even if they lack the lactose utilization plasmid, proving that a lactose-independent PTSGal exists. However, the PTSGal transporter was never identified. Here, with the help of transcriptome analyses and genetic knock-out mutants, we reveal the identities of two low-affinity galactose PTSs. A novel plant-niche-related PTS component Llmg_0963 forming a hybrid transporter Llmg_0963PtcBA and a glucose/mannose-specific PTS are shown to be involved in galactose transport in L. lactis MG1363.

9 citations


Posted ContentDOI
21 Dec 2018-bioRxiv
TL;DR: It is proved mathematically that the resulting optimal metabolic flux distribution is described by a limited number of subnetworks, known as Elementary Flux Modes (EFMs), and it is shown that it is evolution itself that selects for simplicity.
Abstract: Growth rate is a near-universal selective pressure across microbial species. High growth rates require hundreds of metabolic enzymes, each with different nonlinear kinetics, to be precisely tuned within the bounds set by physicochemical constraints. Yet, the metabolic behaviour of many species is characterized by simple relations between growth rate, enzyme expression levels and metabolic rates. We asked if this simplicity could be the outcome of optimisation by evolution. Indeed, when the growth rate is maximized –in a static environment under mass-conservation and enzyme expression constraints– we prove mathematically that the resulting optimal metabolic flux distribution is described by a limited number of subnetworks, known as Elementary Flux Modes (EFMs). We show that, because EFMs are the minimal subnetworks leading to growth, a small active number automatically leads to the simple relations that are measured. We find that the maximal number of flux-carrying EFMs is determined only by the number of imposed constraints on enzyme expression, not by the size, kinetics or topology of the network. This minimal-EFM extremum principle is illustrated in a graphical framework, which explains qualitative changes in microbial behaviours, such as overflow metabolism and co-consumption, and provides a method for identification of the enzyme expression constraints that limit growth under the prevalent conditions. The extremum principle applies to all microorganisms that are selected for maximal growth rates under protein concentration constraints, for example the solvent capacities of cytosol, membrane or periplasmic space. Author summary The microbial genome encodes for a large network of enzyme-catalyzed reactions. The reaction rates depend on concentrations of enzymes and metabolites, which in turn depend on those rates. Cells face a number of biophysical constraints on enzyme expression, for example due to a limited membrane area or cytosolic volume. Considering this complexity and nonlinearity of metabolism, how is it possible, that experimental data can often be described by simple linear models? We show that it is evolution itself that selects for simplicity. When reproductive rate is maximised, the number of active independent metabolic pathways is bounded by the number of growth-limiting enzyme constraints, which is typically small. A small number of pathways automatically generates the measured simple relations. We identify the importance of growth-limiting constraints in shaping microbial behaviour, by focussing on their mechanistic nature. We demonstrate that overflow metabolism – an important phenomenon in bacteria, yeasts, and cancer cells – is caused by two constraints on enzyme expression. We derive experimental guidelines for constraint identification in microorganisms. Knowing these constraints leads to increased understanding of metabolism, and thereby to better predictions and more effective manipulations.

9 citations


Journal ArticleDOI
TL;DR: This methodology permits to analyse metabolic fluxes at early stages with the aim of creating reduced dynamic models of flux data, combining many experiments in a single biologically meaningful model, and identifying the metabolic pathways that drive the organism from one state to another when changing the environmental conditions.
Abstract: A novel framework is proposed to analyse metabolic fluxes in non-steady state conditions, based on the new concept of dynamic elementary mode (dynEM): an elementary mode activated partially depending on the time point of the experiment. Two methods are introduced here: dynamic elementary mode analysis (dynEMA) and dynamic elementary mode regression discriminant analysis (dynEMR-DA). The former is an extension of the recently proposed principal elementary mode analysis (PEMA) method from steady state to non-steady state scenarios. The latter is a discriminant model that permits to identify which dynEMs behave strongly different depending on the experimental conditions. Two case studies of Saccharomyces cerevisiae, with fluxes derived from simulated and real concentration data sets, are presented to highlight the benefits of this dynamic modelling. This methodology permits to analyse metabolic fluxes at early stages with the aim of i) creating reduced dynamic models of flux data, ii) combining many experiments in a single biologically meaningful model, and iii) identifying the metabolic pathways that drive the organism from one state to another when changing the environmental conditions.

8 citations


Journal ArticleDOI
TL;DR: The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation and the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer.

7 citations


Journal ArticleDOI
TL;DR: From this, a comprehensive philosophy on how translation in training may be achieved in a dynamic and multidisciplinary research area is developed, which is described here and concrete suggestions on how this may be implemented in practice are presented.
Abstract: Motivation: Our society has become data-rich to the extent that research in many areas has become impossible without computational approaches. Educational programmes seem to be lagging behind this development. At the same time, there is a growing need not only for strong data science skills, but foremost for the ability to both translate between tools and methods on the one hand, and application and problems on the other. Results: Here we present our experiences with shaping and running a masters’ programme in bioinformatics and systems biology in Amsterdam. From this, we have developed a comprehensive philosophy on how translation in training may be achieved in a dynamic and multidisciplinary research area, which is described here. We furthermore describe two requirements that enable translation, which we have found to be crucial: sufficient depth and focus on multidisciplinary topic areas, coupled with a balanced breadth from adjacent disciplines. Finally, we present concrete suggestions on how this may be implemented in practice, which may be relevant for the effectiveness of life science and data science curricula in general, and of particular interest to those who are in the process of setting up such curricula.

4 citations


Journal ArticleDOI
TL;DR: A mathematical analysis of an ordinary differential equation model, including NADH to account for the redox balance, offers the key ingredients necessary for successful numerical continuation, which highlight the existence of this bistability and the influence of theredox balance.
Abstract: Yeast glycolysis has been the focus of research for decades, yet a number of dynamical aspects of yeast glycolysis remain poorly understood at present. If nutrients are scarce, yeast will provide its catabolic and energetic needs with other pathways, but the enzymes catalysing upper glycolytic fluxes are still expressed. We conjecture that this overexpression facilitates the rapid transition to glycolysis in case of a sudden increase in nutrient concentration. However, if starved yeast is presented with abundant glucose, it can enter into an imbalanced state where glycolytic intermediates keep accumulating, leading to arrested growth and cell death. The bistability between regularly functioning and imbalanced phenotypes has been shown to depend on redox balance. We shed new light on these phenomena with a mathematical analysis of an ordinary differential equation model, including NADH to account for the redox balance. In order to gain qualitative insight, most of the analysis is parameter-free, i.e., without assigning a numerical value to any of the parameters. The model has a subtle bifurcation at the switch between an inviable equilibrium state and stable flux through glycolysis. This switch occurs if the ratio between the flux through upper glycolysis and ATP consumption rate of the cell exceeds a fixed threshold. If the enzymes of upper glycolysis would be barely expressed, our model predicts that there will be no glycolytic flux, even if external glucose would be at growth-permissable levels. The existence of the imbalanced state can be found for certain parameter conditions independent of the mentioned bifurcation. The parameter-free analysis proved too complex to directly gain insight into the imbalanced states, but the starting point of a branch of imbalanced states can be shown to exist in detail. Moreover, the analysis offers the key ingredients necessary for successful numerical continuation, which highlight the existence of this bistability and the influence of the redox balance.

2 citations


Posted ContentDOI
10 Jun 2018-bioRxiv
TL;DR: This work finds an evolutionary extremum principle that dictates that specific growth rate maximisation requires minimisation of metabolic complexity, and provides a biochemical basis for the fundamental limits of evolution, and the driving forces of evolutionary change under growth-enabling conditions.
Abstract: Natural selection pushes microbes towards maximal reproductive rates. This requires optimal tuning of metabolism, within biophysical bounds. A metabolic network can be decomposed into independent pathways, called Elementary Flux Modes (EFMs). Although billions of EFMs exist in a metabolic network, experiments suggest that few are simultaneously used. We present an extremum principle: metabolic simplicity is a consequence of rate maximisation. The number of used EFMs is determined only by the number of constraints that limit enzyme concentrations, not by the size, kinetics or topology of the network. Since the biochemical basis and biophysical constraints are similar across unicellulars, our theory explains why microorganisms show common metabolic behaviours, such as overflow metabolism. We present the extremum principle in a graphical framework, which also provides guidelines for experimental characterization of the growth-limiting constraints. This work provides a practical theory, rooted in biochemistry, that describes a fundamental limit of evolution and phenotypic adaptation.

Posted ContentDOI
02 Oct 2018-bioRxiv
TL;DR: This work characterised 27 FPs in vivo using Saccharomyces cerevisiae as model organism, and codon optimized the best performing FPs for optimal expression in yeast, and found that codon-optimization alters FP characteristics.
Abstract: Fluorescent proteins (FPs) are widely used in many organisms, but are commonly characterised in vitro. However, the in vitro properties may poorly reflect in vivo performance. Therefore, we characterised 27 FPs in vivo using Saccharomyces cerevisiae as model organism. We linked the FPs via a T2A peptide to a control FP, producing equimolar expression of the 2 FPs from 1 plasmid. Using this strategy, we characterised the FPs for brightness, photostability, photochromicity and pH-sensitivity, achieving a comprehensive in vivo characterisation. Many FPs showed different in vivo properties compared to existing in vitro data. Additionally, various FPs were photochromic, which affects readouts due to complex bleaching kinetics. Finally, we codon optimized the best performing FPs for optimal expression in yeast, and found that codon-optimization alters FP characteristics. These FPs improve experimental signal readout, opening new experimental possibilities. Our results may guide future studies in yeast that employ fluorescent proteins.