scispace - formally typeset
Search or ask a question

Showing papers by "Christophe Klopp published in 2019"


Journal ArticleDOI
TL;DR: An unexpectedly low level of differentiation is revealed between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and this study highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosome in this clade.
Abstract: Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Mullerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade.

97 citations


Journal ArticleDOI
TL;DR: First multi-species and multi-assay genome annotation results obtained by a FAANG project are reported, showing that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species.
Abstract: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.

82 citations


Journal ArticleDOI
TL;DR: W Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care.
Abstract: We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it’s large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care.

44 citations


Journal ArticleDOI
08 Nov 2019-Viruses
TL;DR: The urgent need to study the host range of these newly discovered viruses in hornets to determine whether they represent a new threat for honey bees or a hope for the biocontrol of V. velutina is underlined.
Abstract: The Asian yellow-legged hornet Vespa velutina nigrithorax, a major predator of honeybees, is spreading in Europe in part due to a lack of efficient control methods. In this study, as a first step to identify biological control agents, we characterized viral RNA sequences present in asymptomatic or symptomatic hornets. Among 19 detected viruses, the honey bee virus Deformed wing virus-B was predominant in all the samples, particularly in muscles from the symptomatic hornet, suggesting a putative cause of the deformed wing symptom. Interestingly, two new viruses closely related to Acyrthosiphon pisum virus and Himetobi P virus and viruses typically associated with honey bees, Acute bee paralysis virus and Black queen cell virus, were detected in the brain and muscles, and may correspond to the circulation and possible replication forms of these viruses in the hornet. Aphid lethal paralysis virus, Bee Macula-like virus, and Moku virus, which are known to infect honey bees, were also identified in the gut virus metagenome of hornets. Therefore, our study underlined the urgent need to study the host range of these newly discovered viruses in hornets to determine whether they represent a new threat for honey bees or a hope for the biocontrol of V. velutina.

35 citations


Posted ContentDOI
30 Jul 2019-bioRxiv
TL;DR: The characterization of the amhr2by gene as a candidate sex determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.
Abstract: Background Yellow perch, Perca flavescens, is an ecologically and commercially important species native to a large portion of the northern United States and southern Canada. It is also a promising candidate species for aquaculture. No yellow perch reference genome, however, has been available to facilitate improvements in both fisheries and aquaculture management practices. Findings By combining Oxford Nanopore Technologies long-reads, 10X genomics Illumina short linked reads and a chromosome contact map produced with Hi-C, we generated a high-continuity chromosome scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome-size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). Genome annotation identified 41.7% (366 Mb) of repeated elements and 24,486 genes including 16,579 genes (76.3%) significantly matching with proteins in public databases. We also provide a first characterization of the yellow perch sex determination locus that contains a male-specific duplicate of the anti-Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex-specific information, we developed a simple PCR genotyping test which accurately differentiates XY genetic males (amhr2by+) from XX genetic females (amhr2by−). Conclusions Our high-quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries, and aquaculture research. In addition, the characterization of the amhr2by gene as a candidate sex determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.

27 citations


Journal ArticleDOI
14 Dec 2019-Toxins
TL;DR: The first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome are provided.
Abstract: In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC–MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.

15 citations


Posted ContentDOI
29 Mar 2019-bioRxiv
TL;DR: A high-quality draft genome assembly of the euryhaline Javafish medaka is provided, and emphasis on the evolutionary adaptation to salinity is given.
Abstract: Background The genus Oryzias is constituted of 35 medaka-fish species each exhibiting various ecological, morphological and physiological peculiarities and adaptations Beyond of being a comprehensive phylogenetic group for studying intra-genus evolution of several traits like sex determination, behaviour, morphology or adaptation through comparative genomic approaches, all medaka species share many advantages of experimental model organisms including small size and short generation time, transparent embryos and genome editing tools for reverse and forward genetic studies The Java medaka, Oryzias javanicus, is one of the two species of medaka perfectly adapted for living in brackish/sea-waters Being an important component of the mangrove ecosystem, O javanicus is also used as a valuable marine test-fish for ecotoxicology studies Here, we sequenced and assembled the whole genome of O javanicus, and anticipate this resource will be catalytic for a wide range of comparative genomic, phylogenetic and functional studies Findings Complementary sequencing approaches including long-read technology and data integration with a genetic map allowed the final assembly of 908 Mbp of the O javanicus genome Further analyses estimate that the O javanicus genome contains 33% of repeat sequences and has a heterozygosity of 096% The achieved draft assembly contains 525 scaffolds with a total length of 8097 Mbp, a N50 of 63 Mbp and a L50 of 37 scaffolds We identified 21454 expressed transcripts for a total transcriptome size of 57, 146, 583 bps Conclusions We provide here a high-quality draft genome assembly of the euryhaline Javafish medaka, and give emphasis on the evolutionary adaptation to salinity

12 citations


Journal ArticleDOI
TL;DR: The cold storage under darkness appeared to delay senescence by protecting chloroplasts from degradation and enhancing an antioxidative response and a progressive global expression shutdown appeared, concomitantly with the dehydration stress.

12 citations


Posted ContentDOI
13 Feb 2019-bioRxiv
TL;DR: An unexpected level of limited differentiation within a pair of sex chromosomes harboring an old MSD gene in a wild population of teleost fish is depicted, highlighting the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover ofsex chromosomes in this clade.
Abstract: Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Mullerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidences as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study depicts an unexpected level of limited differentiation within a pair of sex chromosomes harboring an old MSD gene in a wild population of teleost fish, highlights the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade.

11 citations


Journal ArticleDOI
31 Dec 2019-PLOS ONE
TL;DR: Investigating the trancriptomic profile of unfertilized eggs from two populations of Eurasian perch suggests that the domestication process may influence the regulation of the maternal transcripts in fish eggs, which could explain differences of developmental success.
Abstract: Domestication is an evolutionary process during which we expect populations to progressively adapt to an environment controlled by humans. It is accompanied by genetic and presumably epigenetic changes potentially leading to modifications in the transcriptomic profile in various tissues. Reproduction is a key function often affected by this process in numerous species, regardless of the mechanism. The maternal mRNA in fish eggs is crucial for the proper embryogenesis. Our working hypothesis is that modifications of maternal mRNAs may reflect potential genetic and/or epigenetic modifications occurring during domestication and could have consequences during embryogenesis. Consequently, we investigated the trancriptomic profile of unfertilized eggs from two populations of Eurasian perch. These two populations differed by their domestication histories (F1 vs. F7+-at least seven generations of reproduction in captivity) and were genetically differentiated (FST = 0.1055, p<0.05). A broad follow up of the oogenesis progression failed to show significant differences during oogenesis between populations. However, the F1 population spawned earlier with embryos presenting an overall higher survivorship than those from the F7+ population. The transcriptomic profile of unfertilized eggs showed 358 differentially expressed genes between populations. In conclusion, our data suggests that the domestication process may influence the regulation of the maternal transcripts in fish eggs, which could in turn explain differences of developmental success.

10 citations


Journal ArticleDOI
TL;DR: In this paper, transcriptome analyses were conducted on RNAs extracted from the livers of Pekin and Muscovy duck species and of their reciprocal hybrids, Mule and Hinny ducks fed ad libitum or overfed to identify differentially expressed genes and associated functions.
Abstract: Duck species are known to have different susceptibility to fatty liver production in response to overfeeding. In order to better describe mechanisms involved in the development of hepatic steatosis and differences between species, transcriptome analyses were conducted on RNAs extracted from the livers of Pekin and Muscovy duck species and of their reciprocal hybrids, Mule and Hinny ducks fed ad libitum or overfed to identify differentially expressed genes and associated functions. After extraction from the liver of ducks from the four genetic types, RNAs were sequenced and sequencing data were analyzed. Hierarchic clustering and principal component analyses of genes expression levels indicated that differences between individuals lie primarily in feeding effect, differences between genetic types being less important. However, Muscovy ducks fed ad libitum and overfed were clustered together. Interestingly, Hinny and Mule hybrid ducks could not be differentiated from each other, according to feeding. Many genes with expression differences between overfed and ad libitum fed ducks were identified in each genetic type. Functional annotation analyses of these differentially expressed genes highlighted some expected functions (carbohydrate and lipid metabolisms) but also some unexpected ones (cell proliferation and immunity). These analyses evidence differences in response to overfeeding between different genetic types and help to better characterize functions involved in hepatic steatosis in ducks.

Journal ArticleDOI
TL;DR: The current results on the structure of chicken IGS together with the previously reported ribosomal gene cluster sequence provide sufficient data to consider that the complete chicken rDNA sequence is assembled with confidence in terms of molecular DNA organization.
Abstract: Ribosomal DNA (rDNA) repeats are situated in the nucleolus organizer regions (NOR) of chromosomes and transcribed into rRNA for ribosome biogenesis. Thus, they are an essential component of eukaryotic genomes. rDNA repeat units consist of rRNA gene clusters that are transcribed into single pre-rRNA molecules, each separated by intergenic spacers (IGS) that contain regulatory elements for rRNA gene cluster transcription. Because of their high repeat content, rDNA sequences are usually absent from genome assemblies. In this work, we used the long-read sequencing technology to describe the chicken IGS and fill the knowledge gap on rDNA sequences of one of the key domesticated animals. We used the long-read PacBio RSII technique to sequence the BAC clone WAG137G04 (Wageningen BAC library) known to contain chicken NOR elements and the HGAP workflow software suit to assemble the PacBio RSII reads. Whole-genome sequence contigs homologous to the chicken rDNA repetitive unit were identified based on the Gallus_gallus-5.0 assembly with BLAST. We used the Geneious 9.0.5 and Mega software, maximum likelihood method and Chickspress project for sequence evolution analysis, phylogenetic tree construction and analysis of the raw transcriptome data. Three complete IGS sequences in the White Leghorn chicken genome and one IGS sequence in the red junglefowl contig AADN04001305.1 (Gallus_gallus-5.0) were detected. They had various lengths and contained three groups of tandem repeats (some of them being very GC rich) that form highly organized arrays. Initiation and termination sites of rDNA transcription were located within small and large unique regions (SUR and LUR), respectively. No functionally significant sites were detected within the tandem repeat sequences. Due to the highly organized GC-rich repeats, the structure of the chicken IGS differs from that of IGS in human, apes, Xenopus or fish rDNA. However, the chicken IGS shares some molecular organization features with that of the turtles, which are other representatives of the Sauropsida clade that includes birds and reptiles. Our current results on the structure of chicken IGS together with the previously reported ribosomal gene cluster sequence provide sufficient data to consider that the complete chicken rDNA sequence is assembled with confidence in terms of molecular DNA organization.

Journal ArticleDOI
TL;DR: A complex transcriptome modulation in the hypothalamus of chicken in response to low-energy diet is observed suggesting numerous changes in synaptic plasticity, endocannabinoid regulation, neurotransmission, lipid metabolism, mitochondrial activity and protein synthesis.
Abstract: Production conditions of layer chicken can vary in terms of temperature or diet energy content compared to the controlled environment where pure-bred selection is undertaken. The aim of this study was to better understand the long-term effects of a 15%-energy depleted diet on egg-production, energy homeostasis and metabolism via a multi-tissue transcriptomic analysis. Study was designed to compare effects of the nutritional intervention in two layer chicken lines divergently selected for residual feed intake. Chicken adapted to the diet in terms of production by significantly increasing their feed intake and decreasing their body weight and body fat composition, while their egg production was unchanged. No significant interaction was observed between diet and line for the production traits. The low energy diet had no effect on adipose tissue and liver transcriptomes. By contrast, the nutritional challenge affected the blood transcriptome and, more severely, the hypothalamus transcriptome which displayed 2700 differentially expressed genes. In this tissue, the low-energy diet lead to an over-expression of genes related to endocannabinoid signaling (CN1R, NAPE-PLD) and to the complement system, a part of the immune system, both known to regulate feed intake. Both mechanisms are associated to genes related polyunsaturated fatty acids synthesis (FADS1, ELOVL5 and FADS2), like the arachidonic acid, a precursor of anandamide, a key endocannabinoid, and of prostaglandins, that mediate the regulatory effects of the complement system. A possible regulatory role of NR1H3 (alias LXRα) has been associated to these transcriptional changes. The low-energy diet further affected brain plasticity-related genes involved in the cholesterol synthesis and in the synaptic activity, revealing a link between nutrition and brain plasticity. It upregulated genes related to protein synthesis, mitochondrial oxidative phosphorylation and fatty acid oxidation in the hypothalamus, suggesting reorganization in nutrient utilization and biological synthesis in this brain area. We observed a complex transcriptome modulation in the hypothalamus of chicken in response to low-energy diet suggesting numerous changes in synaptic plasticity, endocannabinoid regulation, neurotransmission, lipid metabolism, mitochondrial activity and protein synthesis. This global transcriptomic reprogramming could explain the adaptive behavioral response (i.e. increase of feed intake) of the animals to the low-energy content of the diet.

Journal ArticleDOI
20 Jun 2019-PLOS ONE
TL;DR: Comparison of transcriptome profiling of abomasal mucosa and lymph node tissues from non-infected, resistant and susceptible infected Creole goats using RNA-sequencing shows differences in the expression profile induced by GIN infection in goats.
Abstract: Gastrointestinal nematodes (GIN) are a major constraint for small ruminant production. Due to the rise of anthelmintic resistance throughout the world, alternative control strategies are needed. The development of GIN resistance breeding programs is a promising strategy. However, a better understanding of the mechanisms underlying genetic resistance might lead to more effective breeding programmes. In this study, we compare transcriptome profiling of abomasal mucosa and lymph node tissues from non-infected, resistant and susceptible infected Creole goats using RNA-sequencing. A total of 24 kids, 12 susceptible and 12 GIN resistant based on the estimated breeding value, were infected twice with 10,000 L3 Haemonchus contortus. Physiological and parasitological parameters were monitored during infection. Seven weeks after the second infection, extreme kids (n = 6 resistant and 6 susceptible), chosen on the basis of the fecal egg counts (FEC), and 3 uninfected control animals were slaughtered. Susceptible kids had significantly higher FEC compared with resistant kids during the second infection with no differences in worm burden, male and female worm count or establishment rate. A higher number of differentially expressed genes (DEG) were identified in infected compared with non-infected animals in both abomasal mucosa (792 DEG) and lymph nodes (1726 DEG). There were fewer DEG in resistant versus susceptible groups (342 and 450 DEG, in abomasal mucosa and lymph nodes respectively). 'Cell cycle' and 'cell death and survival' were the main identified networks in mucosal tissue when comparing infected versus non-infected kids. Antigen processing and presentation of peptide antigen via major histocompatibility complex class I were in the top biological functions for the DEG identified in lymph nodes. The TGFβ1 gene was one of the top 5 upstream DEG in mucosal tissue. Our results are one of the fist investigating differences in the expression profile induced by GIN infection in goats.

Journal ArticleDOI
TL;DR: In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation, supporting the absence of a central hunger response in feed deprived charr.
Abstract: The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish. In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season. Despite prominent differences in body condition between fed and feed deprived charr at the end of the trial, feed deprivation affected the brain transcriptome only slightly. In contrast, the transcriptome differed markedly over time in both fed and feed deprived charr, indicating strong shifts in basic cell metabolic processes possibly due to season, growth, temperature, or combinations thereof. The GO enrichment analysis revealed that many biological processes appeared to change in the same direction in both fed and feed deprived fish. In the feed deprived charr processes linked to oxygen transport and apoptosis were down- and up-regulated, respectively. Known genes encoding for appetite regulators did not respond to feed deprivation. Gene expression of Deiodinase 2 (DIO2), an enzyme implicated in the regulation of seasonal processes in mammals, was lower in response to season and feed deprivation. We further found a higher expression of VGF (non-acronymic) in the feed deprived than in the fed fish. This gene encodes for a neuropeptide associated with the control of energy metabolism in mammals, and has not been studied in relation to regulation of appetite and energy homeostasis in fish. In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation. The absence of a central hunger response in feed deprived charr give support for a strong resilience to the lack of food in this high Arctic species. DIO2 and VGF may play a role in the regulation of energy homeostasis and need to be further studied in seasonal fish.

Journal ArticleDOI
TL;DR: This work demonstrates that even in absence of genome, identification of chemical signals from wild animals is possible and could be helpful in strategies of species control and protection.
Abstract: The water vole Arvicola terrestris is endemic to Europe where its outbreak generates severe economic losses for farmers. Our project aimed at characterising putative chemical signals used by this species, to develop new sustainable methods for population control that could also be used for this species protection in Great Britain. The water vole, as well as other rodents, uses specific urination sites as territorial and sex pheromone markers, still unidentified. Lateral scent glands and urine samples were collected from wild males and females caught in the field, at different periods of the year. Their volatile composition was analysed for each individual and not on pooled samples, revealing a specific profile of flank glands in October and a specific profile of urinary volatiles in July. The urinary protein content appeared more contrasted as males secrete higher levels of a lipocalin than females, whenever the trapping period. We named this protein arvicolin. Male and female liver transcript sequencing did not identify any expression of other odorant-binding protein sequence. This work demonstrates that even in absence of genome, identification of chemical signals from wild animals is possible and could be helpful in strategies of species control and protection.

Journal ArticleDOI
TL;DR: Full de novo assembly transcriptomes of digestive glands are achieved to gain insight into Dreissena polymorpha and D. rostriformis bugensis molecular knowledge, first full transcriptomes for this two Dreissenids species.
Abstract: Dreissenids are established model species for ecological and ecotoxicological studies, since they are sessile and filter feeder organisms and reflect in situ freshwater quality. Despite this strong interest for hydrosystem biomonitoring, omics data are still scarce. In the present study, we achieved full de novo assembly transcriptomes of digestive glands to gain insight into Dreissena polymorpha and D. rostriformis bugensis molecular knowledge. Transcriptomes were obtained by Illumina RNA sequencing of seventy-nine organisms issued from fifteen populations inhabiting sites that exhibits multiple freshwater contamination levels and different hydrosystem topographies (open or closed systems). Based on a recent de novo assembly algorithm, we carried out a complete, quality-checked and annotated transcriptomes. The power of the present study lies in the completeness of transcriptomes gathering multipopulational organisms sequencing and its full availability through an open access interface that gives a friendly and ready-to-use access to data. The use of such data for proteogenomic and targeted biological pathway investigations purpose is promising as they are first full transcriptomes for this two Dreissena species.

Journal ArticleDOI
TL;DR: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not, which may come from teaching and research institutions in France or abroad, or from public or private research centers.
Abstract: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Draft genome assembly and annotation of the gila topminnow Poeciliopsis occidentalis Mariana Mateos, Du Kang, Christophe Klopp, Hugues Parrinello, Mateo Garcia-Olazabal, Molly Schumer, Nathaniel K. Jue, Yann Guiguen, Manfred Schartl

Journal ArticleDOI
TL;DR: This study identified pathogen-induced regulation of key genes and pathways involved in the immune response of macrophages against infection but also likely involved in bacterial evasion of the host immune system, which may contribute to better understanding of the mechanisms underlying subclinical infection such as bovine streptococcal mastitis.
Abstract: Macrophages are key cells of innate immune response and serve as the first line of the defense against bacteria. Transcription profiling of bacteria-infected macrophages could provide important insights on the pathogenicity and host defense mechanisms during infection. We have examined transcription profiles of bovine monocyte-derived macrophages (bMDMs) isolated from the blood of 12 animals and infected in vitro with two strains of Streptococcus agalactiae. Illumina sequencing of RNA from 36 bMDMs cultures exposed in vitro to either one of two sequence types of S. agalactiae (ST103 or ST12) for 6 hours and unchallenged controls was performed. Analyzes of over 1,656 million high quality paired-end sequence reads, revealed 5936 and 6443 differentially expressed genes (p < 0.05) in bMDMs infected with ST103 and ST12, respectively, versus unchallenged controls. Moreover, 588 genes DE between bMDMs infected with ST103 versus ST12 were identified. Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST103 revealed significant enrichment for granulocyte adhesion and diapedesis, while significant enrichment for the phagosome formation pathway was found among down-regulated genes. Moreover, Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST12 showed significant enrichment for Th1/Th2 activation, while the complement activation pathway was overrepresented in the down-regulated genes. Our study identified pathogen-induced regulation of key genes and pathways involved in the immune response of macrophages against infection but also likely involved in bacterial evasion of the host immune system. These results may contribute to the identification of early hallmarks of a subclinical infection such as bovine streptococcal mastitis.

Posted ContentDOI
20 Dec 2019-bioRxiv
TL;DR: These results show that goldfish have a relatively large sex locus on LG22, which is likely the goldfish Y chromosome and developed sex-linked genetic markers in goldfish, which will be important for future research on sex determination and aquaculture applications in this species.
Abstract: Background Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model. We used sequencing approaches to better characterize sex determination and sex-chromosomes in goldfish. Results Our results confirmed that sex determination in goldfish is a mix of environmental and genetic factors and that its sex determination system is male heterogametic (XX/XY). Using reduced representation (RAD-seq) and whole genome (pool-seq) approaches, we characterized sex-linked polymorphisms and developed male specific genetic markers. These male specific markers were used to distinguish sex-reversed XX neomales from XY males and to demonstrate that XX female-to-male sex reversal could even occur at a relatively low rearing temperature (18°C), for which sex reversal has been previously shown to be close to zero. We also characterized a relatively large non-recombining region (∼11.7 Mb) on goldfish linkage group 22 (LG22) that contained a high-density of male-biased genetic polymorphisms. This large LG22 region harbors 373 genes, including a single candidate as a potential master sex gene, i.e., the anti-Mullerian hormone gene (amh). However, no sex-linked polymorphisms were detected in the goldfish amh gene or its 5 kb proximal promoter sequence. Conclusions These results show that goldfish have a relatively large sex locus on LG22, which is likely the goldfish Y chromosome. The presence of a few XX males even at low temperature also suggests that other environmental factors in addition to temperature could trigger female-to-male sex reversal. Finally, we also developed sex-linked genetic markers in goldfish, which will be important for future research on sex determination and aquaculture applications in this species.