scispace - formally typeset
Search or ask a question

Showing papers by "Peter S. Nelson published in 2015"


Journal ArticleDOI
Dan R. Robinson1, Eliezer M. Van Allen2, Eliezer M. Van Allen3, Yi-Mi Wu1, Nikolaus Schultz4, Robert J. Lonigro1, Juan Miguel Mosquera, Bruce Montgomery5, Mary-Ellen Taplin3, Colin C. Pritchard5, Gerhardt Attard6, Gerhardt Attard7, Himisha Beltran, Wassim Abida4, Robert K. Bradley5, Jake Vinson4, Xuhong Cao1, Pankaj Vats1, Lakshmi P. Kunju1, Maha Hussain1, Felix Y. Feng1, Scott A. Tomlins, Kathleen A. Cooney1, David Smith1, Christine Brennan1, Javed Siddiqui1, Rohit Mehra1, Yu Chen8, Yu Chen4, Dana E. Rathkopf8, Dana E. Rathkopf4, Michael J. Morris8, Michael J. Morris4, Stephen B. Solomon4, Jeremy C. Durack4, Victor E. Reuter4, Anuradha Gopalan4, Jianjiong Gao4, Massimo Loda, Rosina T. Lis3, Michaela Bowden3, Michaela Bowden9, Stephen P. Balk10, Glenn C. Gaviola9, Carrie Sougnez2, Manaswi Gupta2, Evan Y. Yu5, Elahe A. Mostaghel5, Heather H. Cheng5, Hyojeong Mulcahy5, Lawrence D. True11, Stephen R. Plymate5, Heidi Dvinge5, Roberta Ferraldeschi6, Roberta Ferraldeschi7, Penny Flohr6, Penny Flohr7, Susana Miranda7, Susana Miranda6, Zafeiris Zafeiriou6, Zafeiris Zafeiriou7, Nina Tunariu7, Nina Tunariu6, Joaquin Mateo7, Joaquin Mateo6, Raquel Perez-Lopez6, Raquel Perez-Lopez7, Francesca Demichelis12, Francesca Demichelis8, Brian D. Robinson, Marc H. Schiffman8, David M. Nanus, Scott T. Tagawa, Alexandros Sigaras8, Kenneth Eng8, Olivier Elemento8, Andrea Sboner8, Elisabeth I. Heath13, Howard I. Scher8, Howard I. Scher4, Kenneth J. Pienta14, Philip W. Kantoff3, Johann S. de Bono6, Johann S. de Bono7, Mark A. Rubin, Peter S. Nelson, Levi A. Garraway2, Levi A. Garraway3, Charles L. Sawyers4, Arul M. Chinnaiyan 
21 May 2015-Cell
TL;DR: This cohort study provides clinically actionable information that could impact treatment decisions for affected individuals and identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF.

2,713 citations


Journal ArticleDOI
Adam Abeshouse1, Jaeil Ahn1, Rehan Akbani1, Adrian Ally1  +308 moreInstitutions (1)
05 Nov 2015-Cell
TL;DR: The Cancer Genome Atlas (TCGA) has been used for a comprehensive molecular analysis of primary prostate carcinomas as discussed by the authors, revealing substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course.

2,109 citations


01 Nov 2015
TL;DR: A comprehensive molecular analysis of 333 primary prostate carcinomas revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1).
Abstract: There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.

1,794 citations


Journal ArticleDOI
TL;DR: It is shown that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells, which might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation.
Abstract: The TOR (target of rapamycin) kinase limits longevity by poorly understood mechanisms. Rapamycin suppresses the mammalian TORC1 complex, which regulates translation, and extends lifespan in diverse species, including mice. We show that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells. Cellular senescence suppresses cancer by preventing cell proliferation. However, as senescent cells accumulate with age, the senescence-associated secretory phenotype (SASP) can disrupt tissues and contribute to age-related pathologies, including cancer. MTOR inhibition suppressed the secretion of inflammatory cytokines by senescent cells. Rapamycin reduced IL6 and other cytokine mRNA levels, but selectively suppressed translation of the membrane-bound cytokine IL1A. Reduced IL1A diminished NF-κB transcriptional activity, which controls much of the SASP; exogenous IL1A restored IL6 secretion to rapamycin-treated cells. Importantly, rapamycin suppressed the ability of senescent fibroblasts to stimulate prostate tumour growth in mice. Thus, rapamycin might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation.

764 citations


Journal ArticleDOI
18 Jul 2015-Cell
TL;DR: Dan Robinson, Eliezer M. Robinson, Andrea Sboner, Marc Schiffman, David M. Smith, Christine Brennan, Javed Siddiqui, Rohit Mehra, Yu Chen, Dana E. Rathkopf, Michael J. Morris, Stephen B. Solomon, Jeremy C. Tomlins, Kathleen A. Reuter, Anuradha Gopalan, Jianjiong Gao, Massimo Loda, Rosina T.

394 citations


Journal ArticleDOI
TL;DR: The first St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) Expert Panel identified and reviewed available evidence for the ten most important areas of controversy in advanced prostate cancer management.

274 citations



Journal ArticleDOI
TL;DR: Findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition.
Abstract: Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. Experimental Design: AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. Results: The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1 . The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. Conclusions: These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. Clin Cancer Res; 21(6); 1–8. ©2014 AACR . See related commentary by Sharifi, p. 1240

153 citations


Journal ArticleDOI
TL;DR: Metastatic neuroendocrine status can be heterogeneous in the same patient, the CRPC neuro endocrine molecular phenotype can be defined by CHGA+/SYP+ dual positivity, and the splicing of REST by SRRM4 could promote the neuroendsocrine phenotype in CRPC.
Abstract: Purpose: The neuroendocrine phenotype is associated with the development of metastatic castration-resistant prostate cancer (CRPC). Our objective was to characterize the molecular features of the neuroendocrine phenotype in CRPC. Experimental Design: Expression of chromogranin A (CHGA), synaptophysin (SYP), androgen receptor (AR), and prostate-specific antigen (PSA) was analyzed by IHC in 155 CRPC metastases from 50 patients and in 24 LuCaP prostate cancer patient-derived xenografts (PDX). Seventy-one of 155 metastases and the 24 LuCaP xenograft lines were analyzed by whole-genome microarrays. REST splicing was verified by PCR. Results: Coexpression of CHGA and SYP in >30% of cells was observed in 22 of 155 metastases (9 patients); 11 of the 22 metastases were AR+/PSA+ (6 patients), 11/22 were AR–/PSA– (4 patients), and 4/24 LuCaP PDXs were AR−/PSA−. By IHC, of the 71 metastases analyzed by whole-genome microarrays, 5 metastases were CHGA+/SYP+/AR−, and 5 were CHGA+/SYP+/AR+. Only CHGA+/SYP+ metastases had a neuroendocrine transcript signature. The neuronal transcriptional regulator SRRM4 transcript was associated with the neuroendocrine signature in CHGA+/SYP+ metastases and all CHGA+/SYP+ LuCaP xenografts. In addition, expression of SRRM4 in LuCaP neuroendocrine xenografts correlated with a splice variant of REST that lacks the transcriptional repressor domain. Conclusions: (i) Metastatic neuroendocrine status can be heterogeneous in the same patient, (ii) the CRPC neuroendocrine molecular phenotype can be defined by CHGA+/SYP+ dual positivity, (iii) the neuroendocrine phenotype is not necessarily associated with the loss of AR activity, and (iv) the splicing of REST by SRRM4 could promote the neuroendocrine phenotype in CRPC. Clin Cancer Res; 21(20); 4698–708. ©2015 AACR.

127 citations


Journal ArticleDOI
TL;DR: It is determined that ERG activates the transcriptional program regulated by YAP1 of the Hippo signaling pathway and found that prostate-specific activation of either ERG or Yap1 in mice induces similar transcriptional changes and results in age-related prostate tumors.

102 citations


Journal ArticleDOI
TL;DR: It is presented the case that in the context of the DHEA-S depot, P450c17 and AKR1C3 inhibition may be an effective combinatorial treatment strategy.

Journal ArticleDOI
TL;DR: The incidence and ability of PTEN alterations to predict aggressive disease in a multicenter study were assessed and an urgent need for predictive biomarkers that can be rapidly deployed to aid in clinical decision‐making was found.
Abstract: BACKGROUND Loss of the phosphatase and tensin homolog (PTEN) tumor suppressor gene is a promising marker of aggressive prostate cancer. Active surveillance and watchful waiting are increasingly recommended to patients with small tumors felt to be low risk, highlighting the difficulties of Gleason scoring in this setting. There is an urgent need for predictive biomarkers that can be rapidly deployed to aid in clinical decision-making. Our objectives were to assess the incidence and ability of PTEN alterations to predict aggressive disease in a multicenter study. METHODS We used recently developed probes optimized for sensitivity and specificity in a four-color FISH deletion assay to study the Canary Retrospective multicenter Prostate Cancer Tissue Microarray (TMA). This TMA was constructed specifically for biomarker validation from radical prostatectomy specimens, and is accompanied by detailed clinical information with long-term follow-up. RESULTS In 612 prostate cancers, the overall rate of PTEN deletion was 112 (18.3%). Hemizygous PTEN losses were present in 55/612 (9.0%) of cancers, whereas homozygous PTEN deletion was observed in 57/612 (9.3%) of tumors. Significant associations were found between PTEN status and pathologic stage (P < 0.0001), seminal vesicle invasion (P = 0.0008), extracapsular extension (P < 0.0001), and Gleason score (P = 0.0002). In logistic regression analysis of clinical and pathological variables, PTEN deletion was significantly associated with extracapsular extension, seminal vesicle involvement, and higher Gleason score. In the 406 patients in which clinical information was available, PTEN homozygous (P = 0.009) deletion was associated with worse post-operative recurrence-free survival (number of events = 189), pre-operative prostate specific antigen (PSA) (P < 0.001), and pathologic stage (P = 0.03). CONCLUSION PTEN status assessed by FISH is an independent predictor for recurrence-free survival in multivariate models, as were seminal vesicle invasion, extracapsular extension, and Gleason score, and preoperative PSA. Furthermore, these data demonstrate that the assay can be readily introduced at first diagnosis in a cost effective manner analogous to the use of FISH for analysis of HER2/neu status in breast cancer. Combined with published research beginning 17 years ago, both the data and tools now exist to implement a PTEN assay in the clinic. Prostate 75: 1206–1215, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.


Journal ArticleDOI
TL;DR: It is demonstrated that knockdown ofPLZF expression promotes a CRPC and enzalutamide-resistant phenotype in prostate cancer cells and implicates PLZF inactivation as a mechanism promoting ADT resistance and the CRPC phenotype.
Abstract: Whole exome sequencing of metastatic castration-resistant prostate cancer (mCRPC) reveal that 5~7% of tumors harbor promyelocytic zinc finger protein (PLZF) homozygous deletions. PLZF is a canonical androgen-regulated putative tumor suppressor gene whose expression is inhibited by androgen deprivation therapy (ADT). Here, we demonstrate that knockdown of PLZF expression promotes a CRPC and enzalutamide resistant phenotype in prostate cancer cells. Reintroduction of PLZF expression is sufficient to reverse androgen-independent growth mediated by PLZF depletion. PLZF loss enhances CRPC tumor growth in a xenograft model. Bioinformatic analysis of the PLZF cistrome shows that PLZF negatively regulates multiple pathways including the MAPK pathway. Accordingly, our data support an oncogenic program activated by ADT and this acquired mechanism together with the finding of genetic loss in CRPC implicate PLZF inactivation as a mechanism promoting ADT resistance and the CRPC phenotype.

Journal ArticleDOI
19 Jun 2015-PLOS ONE
TL;DR: In vitro PCa dormancy-reactivation is characterized by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma, providing the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy.
Abstract: Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.

Journal ArticleDOI
TL;DR: The authors found that transcripts encoding glial cell line-derived neurotrophic factor (GDNF) increased several fold following exposures to cytotoxic agents including radiation, the topoisomerase inhibitor mitoxantrone and the microtubule poison docetaxel.
Abstract: Though metastatic cancers often initially respond to genotoxic therapeutics, acquired resistance is common. In addition to cytotoxic effects on tumor cells, DNA damaging agents such as ionizing radiation and chemotherapy induce injury in benign cells of the tumor microenvironment resulting in the production of paracrine-acting factors capable of promoting tumor resistance phenotypes. In studies designed to characterize the responses of prostate and bone stromal cells to genotoxic stress, we found that transcripts encoding glial cell line-derived neurotrophic factor (GDNF) increased several fold following exposures to cytotoxic agents including radiation, the topoisomerase inhibitor mitoxantrone and the microtubule poison docetaxel. Fibroblast GDNF exerted paracrine effects toward prostate cancer cells resulting in enhanced tumor cell proliferation and invasion, and these effects were concordant with the expression of known GDNF receptors GFRA1 and RET. Exposure to GDNF also induced tumor cell resistance to mitoxantrone and docetaxel chemotherapy. Together, these findings support an important role for tumor microenvironment damage responses in modulating treatment resistance and identify the GDNF signaling pathway as a potential target for improving responses to conventional genotoxic therapeutics.

Journal ArticleDOI
TL;DR: The results demonstrate the feasibility of integrative profiling of routine PCa specimens, which may have utility for understanding disease biology and enabling personalized medicine applications.

Journal ArticleDOI
14 Jul 2015-PLOS ONE
TL;DR: A multi-institutional prostate cancer tissue microarray constructed from radical prostatectomy samples with associated detailed clinical data and with rigorous selection of recurrent and non-recurrent cases was used to test the prognostic value of immunohistochemistry staining results for the ERG and SPINK1 proteins.
Abstract: Distinguishing between patients with early stage, screen detected prostate cancer who must be treated from those that can be safely watched has become a major issue in prostate cancer care. Identification of molecular subtypes of prostate cancer has opened the opportunity for testing whether biomarkers that characterize these subtypes can be used as biomarkers of prognosis. Two established molecular subtypes are identified by high expression of the ERG oncoprotein, due to structural DNA alterations that encode for fusion transcripts in approximately ½ of prostate cancers, and over-expression of SPINK1, which is purportedly found only in ERG-negative tumors. We used a multi-institutional prostate cancer tissue microarray constructed from radical prostatectomy samples with associated detailed clinical data and with rigorous selection of recurrent and non-recurrent cases to test the prognostic value of immunohistochemistry staining results for the ERG and SPINK1 proteins. In univariate analysis, ERG positive cases (419/1067; 39%) were associated with lower patient age, pre-operative serum PSA levels, lower Gleason scores (≤3+4=7) and improved recurrence free survival (RFS). On multivariate analysis, ERG status was not correlated with RFS, disease specific survival (DSS) or overall survival (OS). High-level SPINK1 protein expression (33/1067 cases; 3%) was associated with improved RFS on univariate and multivariate Cox regression analysis. Over-expression of either protein was not associated with clinical outcome. While expression of ERG and SPINK1 proteins was inversely correlated, it was not mutually exclusive since 3 (0.28%) cases showed high expression of both. While ERG and SPINK1 appear to identify discrete molecular subtypes of prostate cancer, only high expression of SPINK1 was associated with improved clinical outcome. However, by themselves, neither ERG nor SPINK1 appear to be useful biomarkers for prognostication of early stage prostate cancer.

Journal ArticleDOI
TL;DR: Cell cycle‐regulated genes may be more highly expressed in actively dividing cells, with transcript levels reflecting tumor growth rate, and expression of cell cycle genes in relation to PCa outcomes in a population‐based cohort is evaluated.
Abstract: BACKGROUND Prostate cancer (PCa) is clinically and biologically heterogeneous, making it difficult to predict at detection whether it will take an indolent or aggressive disease course. Cell cycle-regulated genes may be more highly expressed in actively dividing cells, with transcript levels reflecting tumor growth rate. Here, we evaluated expression of cell cycle genes in relation to PCa outcomes in a population-based cohort. METHODS Gene expression data were generated from tumor tissues obtained at radical prostatectomy for 383 population-based patients (12.3-years average follow-up). The overall mean and individual transcript levels of 30 selected cell cycle genes was compared between patients with no evidence of recurrence (73%) and those who recurred (27%) or died (7%) from PCa. RESULTS The multivariate adjusted hazard ratio (HR) for a change from the 25th to 75th percentile of mean gene expression level (range 8.02–10.05) was 1.25 (95%CI 0.96–1.63; P = 0.10) for PCa recurrence risk, and did not vary substantially by Gleason score, TMPRSS2-ERG fusion status, or family history of PCa. For lethal PCa, the HR for a change (25th to 75th percentile) in mean gene expression level was 2.04 (95%CI 1.26–3.31; P = 0.004), adjusted for clinicopathological variables. The ROC curve for mean gene expression level alone (AUC = 0.740) did not perform as well as clinicopathological variables alone (AUC = 0.803) for predicting lethal PCa, and the addition of mean gene expression to clinicopathological variables did not substantially improve prediction (AUC = 0.827; P = 0.18). Higher TK1 expression was strongly associated with both recurrent (P = 6.7 × 10−5) and lethal (P = 6.4 × 10−6) PCa. CONCLUSIONS Mean expression level for 30 selected cell cycle-regulated genes was unrelated to recurrence risk, but was associated with a twofold increase in risk of lethal PCa. However, gene expression had less discriminatory accuracy than clinical variables alone for predicting lethal events. Transcript levels for several genes in the panel were significantly overexpressed in lethal versus non-recurrent PCa. Prostate 75:1354–1362, 2015. © 2015 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: Chromosomal alterations are not a prerequisite for tumor formation in GEM prostate cancer models and cooperating events do not naturally occur by mechanisms that recapitulate changes in genomic integrity as observed in human prostate cancer.
Abstract: Human prostate cancer is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements, and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined whether structural chromosomal alterations occur in GEM models of prostate cancer and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNA) in the widely used TRAMP, Hi-Myc, Pten-null, and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null, and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). Implications: Chromosomal alterations are not a prerequisite for tumor formation in GEM prostate cancer models and cooperating events do not naturally occur by mechanisms that recapitulate changes in genomic integrity as observed in human prostate cancer. Mol Cancer Res; 13(2); 339–47. ©2014 AACR .

Journal ArticleDOI
TL;DR: In a cohort of low risk PCa patients on AS, reclassification rates on CBx were not statistically different regardless of timing, and these data can be utilized in patient consultation for risk of occult adverse disease and when considering timing of CBx and initiation of AS.