scispace - formally typeset
T

T. J. Sumner

Researcher at Imperial College London

Publications -  342
Citations -  18702

T. J. Sumner is an academic researcher from Imperial College London. The author has contributed to research in topics: Dark matter & Xenon. The author has an hindex of 62, co-authored 329 publications receiving 16405 citations. Previous affiliations of T. J. Sumner include University of Rochester & University of Florida.

Papers
More filters
Journal ArticleDOI

First results from the LUX dark matter experiment at the Sanford Underground Research Facility

D. S. Akerib, +101 more
TL;DR: The first WIMP search data set is reported, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data, finding that the LUX data are in disagreement with low-mass W IMP signal interpretations of the results from several recent direct detection experiments.
Journal ArticleDOI

Results from a Search for Dark Matter in the Complete LUX Exposure

D. S. Akerib, +100 more
TL;DR: This search yields no evidence of WIMP nuclear recoils and constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon experiment are reported.

Laser Interferometer Space Antenna

TL;DR: The LISA Consortium as mentioned in this paper proposed a 4-year mission in response to ESA's call for missions for L3, which is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe.
Journal ArticleDOI

Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

Michele Armano, +118 more
TL;DR: The first results of the LISA Pathfinder in-flight experiment demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density.
Journal ArticleDOI

Low-frequency gravitational-wave science with eLISA/NGO

TL;DR: The New Gravitational-Wave Observatory (NGO) as discussed by the authors, a mission under study by the European Space Agency for launch in the early 2020s, will survey the low-frequency gravitational wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers, the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultra-compact binaries, both detached and mass transferring, in