scispace - formally typeset
Search or ask a question

Showing papers by "Yakov Kuzyakov published in 2019"


Journal ArticleDOI
TL;DR: In this article, a literature analysis allows the conclusion that the rhizosphere extent for most of the parameters assessed by non-destructive visualization techniques is 0.5-4 cm, but exceeds 4 cm for gases, nitrate, water and redox potential.
Abstract: The soil volume affected by roots – the rhizosphere – is one of the most important microbial hotspots determining the processes, dynamics and cycling of carbon (C), nutrients and water in terrestrial ecosystems. Rhizosphere visualization is necessary to understand, localize and quantify the ongoing processes and functions, but quantitative conclusions are very uncertain because of: 1) the continuum of the parameters between the root surface and root-free soil, i.e., there are no sharp borders, 2) differences in the distributions of various parameters (C, nutrients, pH, enzyme and microbial activities, gases, water etc.) across and along roots, 3) temporal changes of the parameters and processes with root growth as well as with water and C flows. In situ techniques: planar optodes, zymography, sensitive gels, 14C and neutron imaging as well as destructive approaches (thin layer slicing) have been used to analyze the rhizosphere extent and the gradients of various physico-chemical and biological characteristics: pH, CO2, O2, redox potential, enzyme activities, content of water, nutrients and excess elements, and organic compounds. A literature analysis allows the conclusion that: i) the rhizosphere extent for most of the parameters assessed by non-destructive visualization techniques is 0.5–4 mm but exceeds 4 mm for gases, nitrate, water and redox potential. ii) The rhizosphere extent of nutrients (N, P) is decoupled from the extent of the corresponding enzyme activities. iii) The imbalance between element flows to and uptake by roots may lead to accumulation of excess elements and formation of root carapaces (e.g. CaCO3 rhizoliths, Fe plaque) ranging up to a few cm. iv) All destructive approaches show a much (3–5 times) larger rhizosphere extent compared to visualization techniques. These conclusions are crucial for a mechanistic understanding of rhizosphere properties and functioning, estimation of the nutrient stocks available to roots, and for rhizosphere modelling considering root growth and architecture. Overall, roots function as ecosystem engineers and build their environment, serving as the main factors shaping rhizosphere extent. Sharp gradients are formed within a few days for nutrients and enzymes, but more time is necessary for the establishment of specific microbial communities. Despite the very strong dynamics of most parameters, their stationarity is reached within a few days because the release of C and enzymes or nutrient uptake are very quickly compensated by utilization by surrounding microorganisms or/and sorption and diffusion processes. We conclude that despite the dynamic nature of each property, the rhizosphere gradients, their extent and shape are quasi-stationary because of the opposite directions of their formation processes.

293 citations


Journal ArticleDOI
27 Mar 2019-Nature
TL;DR: The study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.
Abstract: Agriculture and the exploitation of natural resources have transformed tropical mountain ecosystems across the world, and the consequences of these transformations for biodiversity and ecosystem functioning are largely unknown1-3. Conclusions that are derived from studies in non-mountainous areas are not suitable for predicting the effects of land-use changes on tropical mountains because the climatic environment rapidly changes with elevation, which may mitigate or amplify the effects of land use4,5. It is of key importance to understand how the interplay of climate and land use constrains biodiversity and ecosystem functions to determine the consequences of global change for mountain ecosystems. Here we show that the interacting effects of climate and land use reshape elevational trends in biodiversity and ecosystem functions on Africa's largest mountain, Mount Kilimanjaro (Tanzania). We find that increasing land-use intensity causes larger losses of plant and animal species richness in the arid lowlands than in humid submontane and montane zones. Increases in land-use intensity are associated with significant changes in the composition of plant, animal and microorganism communities; stronger modifications of plant and animal communities occur in arid and humid ecosystems, respectively. Temperature, precipitation and land use jointly modulate soil properties, nutrient turnover, greenhouse gas emissions, plant biomass and productivity, as well as animal interactions. Our data suggest that the response of ecosystem functions to land-use intensity depends strongly on climate; more-severe changes in ecosystem functioning occur in the arid lowlands and the cold montane zone. Interactions between climate and land use explained-on average-54% of the variation in species richness, species composition and ecosystem functions, whereas only 30% of variation was related to single drivers. Our study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.

275 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated prokaryotic and fungal communities and their co-occurrence networks in four aggregate size classes in upland Ultisol following 27 years of mineral and/or organic fertilizer (rice straw, peanut straw, radish, or pig manure) application.
Abstract: Microbes play pivotal roles in soil organic matter (SOM) turnover: formation and decomposition. Organic fertilizers play crucial role for SOM accumulation, aggregate formation and influence microbial community composition and co-occurrence networks in microhabitats. Here, we investigated prokaryotic and fungal communities and their co-occurrence networks in four aggregate size classes in upland Ultisol following 27 years of mineral and/or organic fertilizer (rice straw, peanut straw, radish, or pig manure) application. Organic fertilizers and aggregate size classes have main and interactive effects on SOM content in aggregates (p 250 μm) than microaggregates (

247 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore the determinants of priming intensity along a 2200 km grassland transect on the Tibetan Plateau and find that SOM stability is the major control on priming effect, characterized by chemical recalcitrance and physico-chemical protection.
Abstract: The modification of soil organic matter (SOM) decomposition by plant carbon (C) input (priming effect) represents a critical biogeochemical process that controls soil C dynamics. However, the patterns and drivers of the priming effect remain hidden, especially over broad geographic scales under various climate and soil conditions. By combining systematic field and laboratory analyses based on multiple analytical and statistical approaches, we explore the determinants of priming intensity along a 2200 km grassland transect on the Tibetan Plateau. Our results show that SOM stability characterized by chemical recalcitrance and physico-chemical protection explains more variance in the priming effect than plant, soil and microbial properties. High priming intensity (up to 137% of basal respiration) is associated with complex SOM chemical structures and low mineral-organic associations. The dependence of priming effect on SOM stabilization mechanisms should be considered in Earth System Models to accurately predict soil C dynamics under changing environments. Global soil carbon dynamics are regulated by the modification of soil organic matter (SOM) decomposition by plant carbon input (priming effect). Here, the authors collect soil data along a 2200 km grassland transect on the Tibetan Plateau and find that SOM stability is the major control on priming effect.

170 citations


Journal ArticleDOI
TL;DR: Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.

170 citations


Journal ArticleDOI
TL;DR: In this article, the effects on phosphate (Pi) availability for plants are unknown for saline-alkaline soils using biochar and MgO-modified biochar under field conditions, and they found that electrostatic attraction, precipitation and exchangeable anions contributed to the adsorption of phosphate.

130 citations


Journal ArticleDOI
TL;DR: A unique combination of X-ray micro-tomography and micro-scale enzyme mapping is used to demonstrate for the first time that plant-stimulated soil pore formation appears to be a major, hitherto unrecognized, determinant of whether new C inputs are stored or lost to the atmosphere.
Abstract: Increasing the potential of soil to store carbon (C) is an acknowledged and emphasized strategy for capturing atmospheric CO2. Well-recognized approaches for soil C accretion include reducing soil disturbance, increasing plant biomass inputs, and enhancing plant diversity. Yet experimental evidence often fails to support anticipated C gains, suggesting that our integrated understanding of soil C accretion remains insufficient. Here we use a unique combination of X-ray micro-tomography and micro-scale enzyme mapping to demonstrate for the first time that plant-stimulated soil pore formation appears to be a major, hitherto unrecognized, determinant of whether new C inputs are stored or lost to the atmosphere. Unlike monocultures, diverse plant communities favor the development of 30–150 µm pores. Such pores are the micro-environments associated with higher enzyme activities, and greater abundance of such pores translates into a greater spatial footprint that microorganisms make on the soil and consequently soil C storage capacity. The processes driving soil carbon accretion remain to be poorly understood. Here the authors combined X-ray micro-tomography and zymography to demonstrate that plant-stimulated soil pore formation is a major, hitherto unrecognized, determinant of whether new C inputs are stored or lost to the atmosphere.

128 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of elevated CO2 (eCO2) on belowground processes are incompletely understood due to complex interactions among various ecosystem fluxes and components such as net primary productivity, carbon (C) inputs to soil, and the living and dead soil C and nutrient pools.
Abstract: Atmospheric change encompassing a rising carbon dioxide (CO2) concentration is one component of Global Change that affects various ecosystem processes and functions. The effects of elevated CO2 (eCO2) on belowground processes are incompletely understood due to complex interactions among various ecosystem fluxes and components such as net primary productivity, carbon (C) inputs to soil, and the living and dead soil C and nutrient pools. Here we summarize the literature on the impacts of eCO2 on 1) cycling of C and nitrogen (N), 2) microbial growth and enzyme activities, 3) turnover of soil organic matter (SOM) and induced priming effects including N mobilization/immobilization processes, and 4) associated nutrient mobilization from organic sources, 5) water budget with consequences for soil moisture, 6) formation and leaching of pedogenic carbonates, as well as 7) mobilization of nutrients and nonessential elements through accelerated weathering. We show that all effects in soil are indirect: they are mediated by plants through increased net primary production and C inputs by roots that foster intensive competition between plants and microorganisms for nutrients. Higher belowground C input from plants under eCO2 is compensated by faster C turnover due to accelerated microbial growth, metabolism and respiration, higher enzymatic activities, and priming of soil C, N and P pools. We compare the effects of eCO2 on pool size and associated fluxes in: soil C stocks vs. belowground C input, microbial biomass vs. CO2 soil efflux vs. various microbial activities and functions, dissolved organic matter content vs. its production, nutrient stocks vs. fluxes etc. Based on these comparisons, we generalize that eCO2 will have little impacts on pool size but will strongly accelerate the fluxes in biologically active and stable pools and consequently will accelerates biogeochemical cycles of C, nutrients and nonessential elements.

120 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the effects of tree species richness and the presence of certain influential tree species on soil bacterial and fungal communities in Chinese subtropical forests, using high-throughput Illumina sequencing for microbial identification.
Abstract: Plant interactions and feedbacks with soil microorganisms play an important role in sustaining the functions and stability of terrestrial ecosystems, yet the effects of tree species diversity on soil microbial community in forest ecosystems are still not well understood. Here, we examined the effects of tree species richness (1–12 species) and the presence of certain influential tree species (sampling effect) on soil bacterial and fungal communities in Chinese subtropical forests, using high-throughput Illumina sequencing for microbial identification. We observed that beta rather than alpha diversities of tree species and soil microorganisms were strong coupled. Multivariate regression and redundancy analyses revealed that the effects of tree species identity dominated over tree species richness on the diversity and composition of bacterial and fungal communities in both organic and top mineral soil horizons. Soil pH, nutrients and topography were always identified as significant predictors in the best multivariate models. Tree species have stronger effect on fungi than bacteria in organic soil, and on ectomycorrhizal fungi than saprotrophic fungi in mineral topsoil. Concluding, tree species identity, along with abiotic soil and topographical conditions, were more important factors determining the soil microbial communities in subtropical forests than tree diversity per se.

101 citations


Journal ArticleDOI
TL;DR: A potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes and biodiversity of tropical ecosystems is suggested.
Abstract: Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N-limited temperate forests. In N-rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old-growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low-N), 100 (Medium-N), and 150 (High-N) kg N ha-1 year-1 . Soil organic carbon (SOC) content increased under High-N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2 O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High-N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2 O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.

93 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the results of 13/14C pulse and continuous labeling studies using 112 datasets from 13 articles on the allocation and pathways of photosynthesized C by rice plants to assess C input, budget and amount stabilized in paddy soils.
Abstract: Knowledge of belowground C input by rice plants and its fate is essential for managing C cycling and sequestration in paddy soils. Previous reviews have summarized C input and the pathways of root-derived C in upland soils by labeling with 14C or 13C (13/14C), while rice rhizodeposition and C input in paddy soils have not been comprehensively evaluated. Here, we analyzed the results of 13/14C pulse and continuous labeling studies using 112 datasets from 13 articles on the allocation and pathways of photosynthesized C by rice plants to assess C input, budget, and amount stabilized in paddy soils. Overall, 13/14C partitioning estimated by continuous labeling was 72% to the shoots, 17% to the roots, 10% to the soil, and 1.3% was recovered in microbial biomass. Pulse-labeling studies showed a similar C partitioning: 79%, 13%, 5.5%, and 2.1%, respectively. The total belowground C input estimated based on continuous labeling was 1.6 Mg ha−1 after one rice season, of which rhizodeposition accounted for 0.4 Mg C ha−1. Carbon input assessed by pulse labeling was slightly lower (total belowground C input, 1.4 Mg ha−1; rhizodeposition, 0.3 Mg C ha−1; 14 days after labeling). Rice C input after one cropping season was lower than that by upland plants (cereals and grasses, 1.5–2.2 Mg ha−1). In contrast to upland crops, most paddy systems are located in the subtropics and tropics and have two or three cropping seasons per year. We conclude that (1) pulse labeling underestimates the total belowground C input by 15%, compared with that by continuous labeling, and (2) rhizodeposition of rice accounts for approximately 26% of the total belowground C input, regardless of the labeling method used. Based on allocation ratios, we suggest a simple and practical approach for assessment of the gross C input by rice into the soil, for partitioning among pools and for long-term C stabilization in paddies.

Journal ArticleDOI
TL;DR: In this paper, the responses of Cmic, Nmic, Pmic, the microbial respiration rate (CO2 efflux), and the total DNA content to C and nutrient addition in forest soils with very low (Low-P) and high P (High-P), were examined.
Abstract: Microbial biomass turnover and the associated recycling of carbon (Cmic), nitrogen (Nmic) and phosphorus (Pmic) depend on their stoichiometric relationships and plays a pivotal role for soil fertility. This study examines the responses of Cmic, Nmic, Pmic, the microbial respiration rate (CO2 efflux), and the total DNA content to C and nutrient addition in forest soils with very low (Low-P) and high P (High-P) contents. Both the Low-P and High-P soils were treated with a low and high level of C, N and P (5% and 200% of Cmic, Nmic and Pmic). Phosphorus (33P) was added before the addition of C (14C) and N (15N) to investigate the potential P limitation. We hypothesized two modes of microbial biomass C and nutrient turnover: 1) maintenance through intracellular metabolisms and/or 2) microbial growth and death through necromass reutilization. In Low-P soil, the 2-day-sooner increase of Cmic and Pmic compared to the increase of CO2 efflux and DNA content after high CN input showed the rapid initial uptake of C and limiting nutrients into microbial cells. It also demonstrated a lag period before microbial growth commenced. In High-P soil, however, the CO2 efflux and DNA content increased simultaneously with increases in microbial biomass, reflecting the microbial capacity for immediate growth. Afterwards, CO2 efflux and DNA content dropped to the level before CNP addition, with a decline of Cmic and Pmic in Low-P soil and a decline of Nmic in High-P soil, suggesting a C and P limitation in Low-P soil and N limitation in High-P soil. Under low CNP addition, the microorganisms in High-P soil are ready to grow, while those in Low-P soil are mainly in maintenance mode. The microorganisms under maintenance in low-P soil can switch to growth/death mode after removing the nutrient limitation. High CNP input caused a non-homeostatic response of Cmic: Nmic: Pmic stoichiometry from 691:105:1 to 33:1:1 in Low-P soil, mainly resulting from a higher storage of the limiting elements (C and P) in microbial biomass. The ratio remained stable under low CNP addition due to the endogenous metabolism of C and nutrient at maintenance. The C and nutrient were turnovered much faster by microorganisms in the growth/death mode, confirming a key principle of ecology: the stronger the limitation by an element, the more efficiently that element is retained within an organism, and the more intensively it is reused. The triple labeling approach linked with Cmic: Nmic: Pmic stoichiometry helped to identify the dominant maintenance and growth/death modes of microbial biomass CNP turnover in nutrient-limited and -unlimited soil.

Journal ArticleDOI
TL;DR: Alpine grassland soils of the Qinghai-Tibetan Plateau may be changing from a C sink to a C source under increasing N and P availability, and improvement of alpine grasslands management through nutrient inputs should consider not only the aboveground biomass for grazing, but also the soil C sequestration and ecosystem functioning.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of fertilizer in soil organic carbon (SOC) sequestration and highlighted the importance of fertilization in controlling the priming effect (PE).
Abstract: Straw incorporation is crucial to soil organic carbon (SOC) sequestration, thus improving soil fertility and mitigating climate change. The fate of straw C and the associated net SOC balance remain largely unexplored, particularly in soils subjected to long-term mineral and organic fertilization. To address this, soil (δ13C: –19‰) that had been continuously cropped with maize for 31 years and subjected to five long-term fertilization regimes, including (i) control (Unfertilized), (ii) mineral fertilizer (NPK) application, (iii) 200% NPK (2 × NPK) application, (iv) manure (M) application, and (v) NPK plus manure (NPKM) application, was incubated with or without addition of rice straw (δ13C: –29‰) for 70 days. Straw addition largely primed SOC mineralization. The priming effect (PE) was considerably higher in 2 × NPK (+122% of CO2 from soil without straw addition) but lower in M (+43%) relative to the unfertilized soil (+82%), highlighting the importance of fertilization in controlling PE intensity. Fertilization increased the straw-derived microbial biomass C by 90–577% and straw-derived SOC by 34–68% compared to the unfertilized soil, primarily due to the increased abundance of Gram-negative bacteria and cellobiohydrolase activity. Straw-derived SOC was strongly positively correlated with straw-derived microbial biomass C, suggesting that dead microbial biomass (necromass) was a dominant precursor of SOC formation. Consequently, fertilization facilitated microbial utilization of straw C and its retention in soil, particularly in the M and NPKM fertilized soils. The amounts of straw-derived SOC overcompensated for the SOC losses by mineralization, resulting in net C sequestration which was highest in the NPK fertilized soil. Our study emphasizes that NPK fertilization decreases the intensity of the PE induced by straw addition and increases straw C incorporation into SOC, thus facilitating C sequestration in agricultural soils.

Journal ArticleDOI
01 Mar 2019-Geoderma
TL;DR: In this paper, the authors determine environmental controls of extracellular enzyme production, and hence on potential enzyme activities (Vmax) and substrate affinities (Km), and conclude that substrate availability for microorganisms mainly determined enzyme activity patterns on the continental scale by the humidity gradient.

Journal ArticleDOI
TL;DR: In this paper, the effect of the C/P ratio of root-detritus on the dynamics and distribution of enzyme activities is little revealed, however, the authors hypothesised that P fertilisation would decrease the C /P ratio, therefore affecting the hotspot areas and hot moments of C-acquiring and P-acquired enzyme activities, as well as their activity ratio (C/P acquisition ratio).
Abstract: As the primary microbial substrate after shoot cutting, the element stoichiometry of root-detritus (dying or dead roots) influences the enzyme activity in root-detritusphere. However, the effect of the C/P ratio of root-detritus on the dynamics and distribution of enzyme activities is little revealed. We hypothesised that P fertilisation would decrease the C/P ratio of root-detritus, therefore affecting the hotspot areas and hot moments of C-acquiring and P-acquiring enzyme activities, as well as their activity ratio (C/P acquisition ratio). Root-detritus of low (59.0) and high (170.8) C/P ratios was produced in P-poor soil with and without P fertilisation, respectively. In situ soil zymography showed that the distribution of C-acquiring enzymes (β-glucosidase and cellobiohydrolase) was more associated with root-detritus than P-acquiring enzymes (acid and alkaline phosphomonoesterase). P fertilisation increased the hotspot areas of C-acquiring enzyme activities over the experiment, without influencing their temporal dynamics. However, its effect on phosphomonoesterase activities depended on the decomposition and delayed the appearance of the highest hotspot areas. P supply met the microbial demand in P-fertilised soil, with high C/P acquisition ratio and constant stoichiometry of microbial biomass C (MBC)/microbial biomass P (MBP). A low C/P acquisition ratio and high MBC/MBP in non-fertilised soil was observed, indicating P limitation for microorganisms. After the 150-day incubation, Olsen P significantly increased in P-fertilised soil (P < 0.05), whereas it decreased in the root-detritusphere of non-fertilised soil. We conclude that the decomposition of root-detritus with a low C/P ratio has potential to improve soil P availability; however, C-P imbalance may increase during the decomposition of root-detritus with a high C/P ratio.

Journal ArticleDOI
TL;DR: In this article, the effects of labile C availability (biochemical factor) and temperature (environmental factor) on enzyme activities were investigated in paddy soil for 75 days at four temperatures (5, 15, 25, and 35) under anaerobic conditions.
Abstract: Global warming increases belowground carbon (C) input as plant litterfall, root biomass and rhizodeposition, which influences the stocks and dynamics of soil organic matter. To clarify the effects of labile C availability (biochemical factor) and temperature (environmental factor) on enzyme activities, we incubated typical paddy soil for 75 d at four temperatures (5, 15, 25, and 35 °C) under anaerobic conditions. Acetate was used as the source of labile C and methane. The potential activities of three hydrolases (β-glucosidase, chitinase, and xylanase) were analysed on days 3, 15, and 75 after acetate addition. Activity of β-glucosidase and chitinase in soil without acetate addition was 2.1–2.7 times higher than that with acetate. Xylanase activity increased with temperature and incubation period. The enzymes involved in the C cycle were sensitive to temperature, whereas chitinase (responsible for N cycle) activity became temperature sensitive only after acetate addition (Q10-Vmax ≥ 1). Organic C mineralisation (CO2 release) was more sensitive at low temperature with Q10 values 1.1–3.4 times higher at 5–15 °C than at 25–35 °C. The Q10 values for methane (CH4) emission were 2.8–13.5 times higher at 5–15 °C than at 25–35 °C. Organic matter decomposition in paddy soil was more sensitive to temperature (Q10 of CO2 and CH4 emission ≥ 1) than enzyme activities. Comparison of abiotic (temperature) and biochemical (C availability) effects indicated that warming has limited effects on hydrolase activities in paddy soil. The increase in labile C remarkably stimulated microbial activity and soil organic matter turnover. We conclude that: i) enzyme activities are more sensitive to C addition than to temperature; ii) and SOM decomposition is accelerated by both C input and warming, especially at low temperatures.

Journal ArticleDOI
TL;DR: In this paper, a long-term field experiment had seven treatments: no fertilization (Control), mineral NPK fertilizers, NPK plus lime (NPK+Lime), NPK+crop residues, and NPK-+PigManure increased the mass proportion of large macroaggregates 2.9-fold compared with the Control, and reduced the effective diffusion coefficient of oxygen in the soil.
Abstract: Organic fertilizers increase soil organic matter (SOM) stocks, but the underlying processes depend on the fertilizer type and remain largely unknown. To evaluate the predominant C stabilization mechanisms, upland Ultisols subjected to 27 years of mineral and organic fertilization were analyzed for SOM content, aggregate size classes, and amino sugar composition. The long-term field experiment had seven treatments: no fertilization (Control), mineral NPK fertilizers (NPK), NPK plus lime (NPK + Lime), NPK plus peanut straw (NPK + PeanutStraw), NPK plus rice straw (NPK + RiceStraw), NPK plus radish residue (NPK + RadishResidue), and NPK plus pig manure (NPK + PigManure). The 27-year application of mineral fertilizers (NPK and NPK + Lime), NPK + crop residues, and NPK + PigManure increased SOM content by 11.0–13.2%, 16.3–25.3%, and 44.3%, respectively, compared with the Control. The aliphaticity and recalcitrance indices based on 13C nuclear magnetic resonance spectra of organic fertilizers were higher for pig manure than for crop residues. Both indices were closely correlated with SOM content after 27 years, so higher proportions of recalcitrant C in manure facilitated SOM accumulation. NPK + PigManure increased the mass proportion of large macroaggregates 2.9-fold compared with the Control, and reduced the effective diffusion coefficient of oxygen in the soil. Consequently, NPK + PigManure limited the activity and abundance of aerobes and the accessibility of SOM to microorganisms, in turn facilitating SOM accumulation. The application of mineral fertilizers, NPK + crop residues, and NPK + PigManure increased microbial necromass to 2.85–3.03, 3.21–3.45, and 3.62 g C kg−1, respectively, from 2.63 g C kg−1 in the Control. Compared with crop residues, pig manure did not affect bacterial necromass but increased fungal necromass from 2.19 to 2.39 g C kg−1 to 2.58 g C kg−1, which might associate with increased SOM stability. However, the relative contribution of microbial necromass to SOM was lower under NPK + PigManure than under NPK + crop residues, since more added C was protected in the NPK + PigManure soil. Our results suggest that manure may contribute to SOM accumulation and stabilization in three ways: directly through the input of recalcitrant organic C, indirectly through the stabilization of aggregates and physical protection of C, and to a lesser extent through increasing fungal necromass.

Journal ArticleDOI
TL;DR: In this article, a new approach combining soil zymography and simulated exudates released from Rhizon® samplers was introduced to stimulate microbial activities but avoid the direct release of enzymes by living roots.
Abstract: Roots increase microbial activities depending on exudate composition, especially on the ratios of sugars, carboxylic and amino acids, and thus structure enzyme activities in the rhizosphere. We introduce a new approach combining soil zymography and simulated exudates released from Rhizon® samplers to stimulate microbial activities but avoid the direct release of enzymes by living roots. This enabled visualizing, localizing and analyzing the effects of simulated root exudates on activity of five microbial enzymes involved in carbon (C) (β-glucosidase, cellobiohydrolase), nitrogen (N) (leucine aminopeptidase), phosphorus (P) (phosphatase) and sulfur (S) (sulfatase) cycles. We tested the hypotheses that 1) artificial exudates stimulate microorganisms for enzyme production and form spatial gradients around roots, and 2) the extent of microbial enzyme activities in the rhizosphere is component-specific. In line with these hypotheses, the activities of P-, N- and S-related enzymes were higher near the artificial root and gradually decreased as a function of distance from the root. The pattern for C-cycle enzymes was uniform and independent of the exudate composition. Among all components, alanine increased the rhizosphere extent much stronger than other substances, while methionine had no effect on the spatial distribution of enzyme activities. Vmax of all enzymes increased with alanine addition, but decreased after adding citrate. The ratios of enzyme activities demonstrated that rhizosphere microorganisms release more leucine aminopeptidase than other enzymes to meet their N demand. Glucose increased the Km of cellobiohydrolase and β-glucosidase, while alanine had the greatest effect on the Km of leucine aminopeptidase and sulfatase. Phosphatase is the enzyme most sensitive to the composition of root exudates; consequently, any factor influencing root exudate composition can strongly affect the P cycle. We conclude that the rhizosphere extent of microbial-derived enzyme activities is component- and enzyme-specific and that this extent depends on the substrate stoichiometry and microbial nutrient demand.

Journal ArticleDOI
TL;DR: In this paper, a theory of anthropedogenesis is proposed for soil development under agricultural practices, and a multidimensional attractor space is defined to predict the trajectory and the final state of agrogenic soil development and developing measures to combat soil degradation.
Abstract: . Agricultural land covers 5.1×109 ha (ca. 50 % of potentially suitable land area), and agriculture has immense effects on soil formation and degradation. Although we have an advanced mechanistic understanding of individual degradation processes of soils under agricultural use, general concepts of agropedogenesis are absent. A unifying theory of soil development under agricultural practices, of agropedogenesis, is urgently needed. We introduce a theory of anthropedogenesis – soil development under the main factor “humankind” – the sixth factor of soil formation, and deepen it to encompass agropedogenesis as the most important direction of anthropedogenesis. The developed theory of agropedogenesis consists of (1) broadening the classical concept of factors → processes → properties → functions along with their feedbacks to the processes, (2) a new concept of attractors of soil degradation, (3) selection and analysis of master soil properties, (4) analysis of phase diagrams of master soil properties to identify thresholds and stages of soil degradation, and, finally, (5) a definition of the multidimensional attractor space of agropedogenesis. The main feature of anthropedogenesis is the narrowing of soil development to only one function (e.g. crop production for agropedogenesis), and this function is becoming the main soil-forming factor. The focus on only one function and the disregard of other functions inevitably lead to soil degradation. We show that the factor humankind dominates over the effects of the five natural soil-forming factors and that agropedogenesis is therefore much faster than natural soil formation. The direction of agropedogenesis is largely opposite to that of natural soil development and is thus usually associated with soil degradation. In contrast to natural pedogenesis leading to divergence of soil properties, agropedogenesis leads to their convergence because of the efforts to optimize conditions for crop production. Agricultural practices lead soil development toward a quasi-steady state with a predefined range of measured properties – attractors (an attractor is a minimal or maximal value of a soil property toward which the property will develop via long-term intensive agricultural use from any natural state). Based on phase diagrams and expert knowledge, we define a set of “master properties” (bulk density and macroaggregates, soil organic matter content, C:N ratio, pH and electrical conductivity – EC, microbial biomass and basal respiration) as well as soil depth (A and B horizons). These master properties are especially sensitive to land use and determine the other properties during agropedogenesis. Phase diagrams of master soil properties help identify thresholds and stages of soil degradation, each of which is characterized by one dominating process. Combining individual attractors in a multidimensional attractor space enables predicting the trajectory and the final state of agrogenic soil development and developing measures to combat soil degradation. In conclusion, the suggested new theory of anthro- and agropedogenesis is a prerequisite for merging various degradation processes into a general view and for understanding the functions of humankind not only as the sixth soil-forming factor but also as an ecosystem engineer optimizing its environment to fulfil a few desired functions.

Journal ArticleDOI
15 Mar 2019-Geoderma
TL;DR: In this paper, the dynamics of rice rhizo-C in soils and its allocation to microorganisms during rice growth, as well as the effects of nitrogen (N-NH4+) fertilization are poorly understood, particularly with respect to the initial uptake of rhizoC by microorganisms and its utilization during the entire growth period.

Journal ArticleDOI
01 Jul 2019-Catena
TL;DR: In this paper, the authors evaluated δ13C and δ15N depth patterns of peat cores sampled at nine sites in two nearby Alpine peat bogs with varying degree of organic matter degradation.
Abstract: Decomposition of organic substances is one of the main processes responsible for the signatures of stable carbon and nitrogen isotopes (δ13C and δ15N) in soils and peats. However, the applicability of δ13C and δ15N signatures at the natural abundance level as indicators of the degree of peat decomposition is still debatable. We evaluated δ13C and δ15N depth patterns of peat cores sampled at nine sites in two nearby Alpine peat bogs with varying degree of organic matter degradation. Based on water table depths and past drainage intensities, the peat cores were divided into three degradation classes. We found similar overall depths patterns of δ13C and δ15N across the nine depth profiles and distinct differences between aerobic and anaerobic peat layers. Considerable differences in stable C and N isotope signatures of same depths were detected between profiles of the three classes, whereas depth profiles of peat cores with similar degree in peatland degradation were nearly identical. In the aerobic peat layers, δ13C and δ15N increased with depths at all study sites from 2.6‰ to 4.9‰ for δ13C and 3.2‰ to 7.0‰ for δ15N compared to the initial signatures of the plant biomass. Standardised δ13C of aerobic layers differ distinctly between slightly degraded peats at the open peat bog area, intermediately degraded peats at the tree-covered edge areas and strongly degraded peats at the former peat-cutting site. δ13C signatures of aerobic layers of strongly degraded peats were markedly more negative compared to the slightly degraded peats because of the selective 12C losses by microbial respiration. δ15N were more positive at strongly degraded than at slightly degraded sites in both, aerobic and anaerobic peat layers. The uniform stable isotope ratios in the anaerobic layers deeper than the local maxima of the isotopic signatures support the assumption that minor 13C fractionation occurs under anaerobic conditions. δ13C slightly declining with depth in the waterlogged layers of strongly degraded peat reflects the preferential utilisation and loss of labile organic compounds enriched in 13C. δ15N of strongly degraded peats was higher compared to well-conserved peat. The close relationship between the measured δ15N to δ15N modelled based on C:N ratios and bulk densities supports the assumption that the δ15N signature is the result of isotopic fractionation by peat decomposition. We conclude that peat decomposition strongly affects the δ13C and δ15N depth profiles of peat bogs and most likely overrides other factors, such as differences between plant species, litter components, atmospheric δ13C shift during peat formation, temperature effects, or type of mycorrhizal symbiosis.

Journal ArticleDOI
TL;DR: In this article, the authors focused on interactions between carbon and nitrogen availability and consequences for rhizodeposition and microbial community structure in paddy soil and found that +CN application led to a higher yield and lower root carbon and N content: 13C assimilated in shoots increased by 1.39 and that in roots decreased by 0.75-fold.
Abstract: Carbon (C) and nitrogen (N) availability in soil change microbial community composition and activity and so, might affect soil organic matter (SOM) decomposition as well as allocation of plant assimilates. The study was focused on interactions between C and N availability and consequences for rhizodeposition and microbial community structure in paddy soil. Rice continuously labeled in a 13CO2 atmosphere was fertilized with either carboxymethyl cellulose (CMC) (+C), ammonium sulfate (+N), or their combination (+CN), and unfertilized soil was used as a control. 13C was traced in aboveground and belowground plant biomass, soil organic matter, and microbial biomass. Microbial community composition was analyzed by phospholipid fatty acids (PLFAs). +CN application led to a higher yield and lower root C and N content: 13C assimilated in shoots increased by 1.39-fold and that in roots decreased by 0.75-fold. Correspondingly, after +CN addition, 13C from rhizodeposits incorporated into SOM and microorganisms decreased by 0.68-fold and 0.53-fold, respectively, as compared with that in the unfertilized soil. The application of +C or + N alone resulted in smaller changes. CMC led to a 3% of total N mobilized from SOM and resulted in a positive priming effect. Both fertilizations (+C, +N, or + CN) and plant growth stages affected soil microbial community composition. With decreasing microbial biomass C and N, and PLFA content under +CN amendment, +CN fertilization decreased Gram-positive (G+)/ Gram-negative (G-) ratios, and resulted in lower G+ bacteria and fungi abundance, whereas G- and actinomycetes were stimulated by N fertilization. Organic C fertilization led to a positive N priming effect. Organic C and mineral N application decreased C input by rhizodeposition associated with lower 13C recovery in SOM and microbial incorporation. C and N addition also altered microbial community composition, as +CN decreased content of microbial groups, such as G+ bacteria and fungi, but +N stimulated G- bacteria and actinomycetes.

Journal ArticleDOI
TL;DR: In this paper, the effects of 11 years of combined tillage and crop residue management treatments on soil organic carbon (SOC), total nitrogen (TN) concentrations and enzyme activities in bulk soil and particle-size fractions from a rainfed wheat (Triticum aestivum L.) monoculture system in this region.
Abstract: Soil organic matter (SOM) concentration and enzyme activity are important biochemical indicators of soil health for assessing the sustainability of agricultural management practices. However, little is known about the long-term effects of tillage and crop residue management on SOM and enzyme activities in soil particle-size fractions on the Loess Plateau of Northern China. The objective of this study was to investigate the effects of 11 years of combined tillage and crop residue management treatments on soil organic carbon (SOC), total nitrogen (TN) concentrations and enzyme activities in bulk soil and particle-size fractions from a rainfed wheat (Triticum aestivum L.) monoculture system in this region. We hypothesized that reduced tillage and increased residue retention would increase SOC, TN and enzyme activities in both bulk soil and particle-size fractions, and that enzyme activity would serve as a more sensitive indicator of soil health in response to management. Compared with conventional tillage and residue removal (CTRR), reduced tillage and stubble mulch residue retention (RTSM) increased bulk soil activities of most enzymes (sulfatase +68%, invertase +62%, β-glucosidase +58%, dehydrogenase +46%). These increases were greater than the relative increases in total SOC (34%) and TN (33%) concentrations, supporting our hypothesis of a stronger response in microbial activity to management than total element stocks. The RTSM treatment also increased SOC and TN concentrations, as well as β-glucosidase, acid phosphatase and urease activities in all particle-size fractions (2000-250, 250-53, 53-2 and < 2 μm) compared with the CTRR treatment. Both β-glucosidase and acid phosphatase showed a general decrease from coarse- to fine-sized fractions, and resembled the distribution of SOC and TN concentrations in particle-size fractions. Conversely, urease activity was greater in sand and clay fractions, which was decoupled from SOC and TN distributions. Our results indicate that biological indicators of soil health were more sensitive than C and N stocks to cumulative long-term changes in tillage and residue management.

Journal ArticleDOI
15 Nov 2019-Geoderma
TL;DR: In this paper, the authors investigated how the abandonment of arable soils affects the accumulation of organic carbon (SOC), its composition, stability, and turnover during the post-agricultural restoration of soils, and microbial activity parameters.

Journal ArticleDOI
TL;DR: Three recent papers presented contrasting views on the importance of aggregates for C and N turnover, with a main focus on greenhouse gas (GHG) emissions.
Abstract: Hierarchy levels and building units of micro- and macroaggregates and related separation methods. The hierarchy levels (left arrow) are inversely related to the energy necessary for the disruption (right arrow).

Journal ArticleDOI
TL;DR: It is concluded that shrubs increase the biological (plant and microbial) P transformation in the soil, the P uplift in the profile, and P cycling in shrubby grassland ecosystems.
Abstract: The globally expanding colonization of grasslands by shrubs increases soil organic carbon and nitrogen, but the effects of shrubs on phosphorus (P) cycling have been rarely studied. We compared P contents in roots and soil fractions, phosphatase activity in the 1 m profile, and in situ net P mineralization between shrubby Potentilla fruticosa patches and grassy interspaces in grazed shrubby meadows at three representative sites on the eastern Tibetan Plateau. The P uptake of P. fruticosa exceeded 1 m soil depth, whereas grasses acquired P mainly within the upper 0.6 m. The P contents in shoots, aboveground litter and roots under P. fruticosa were greater than those under grasses. Litter P stock under the shrubs was 4–8 times higher than that under grasses and the root P stock doubled compared to that in grass areas. P. fruticosa generally increased the organic P (OP) content in the topsoil but decreased inorganic P (IP) in the subsoil. Phosphorus availability increased in the topsoil but decreased in the subsoil under the shrubs compared to grasses. Microbial biomass P (MBP), the activities of acid and alkaline phosphatases, and OP lability were all greater in the 1 m soil under P. fruticosa than grasses, leading to faster P mineralization and the P turnover under the shrubs. In the 1 m soil, P. fruticosa increased MBP and OP stocks but decreased IP and available P stocks. The larger and deeply distributed root system of P. fruticosa improved its P uptake ability especially from the subsoil. The subsequent greater organic matter input through litter fall and root turnover under P. fruticosa fed a larger microbial biomass that synthesized more microbial-derived OP in the topsoil. We concluded that shrubs increase the biological (plant and microbial) P transformation in the soil, the P uplift in the profile, and P cycling in shrubby grassland ecosystems. Such mechanisms structuring spatial heterogeneity of P content, transformation, turnover and fluxes are common in shrubby grasslands worldwide.

Journal ArticleDOI
15 Oct 2019-Geoderma
TL;DR: In this article, the role of acetate, formate, oxalate, and propionate on Fe(III) reduction, P mobilization, and CO2 efflux in two paddy soils (i.e. oxisol and ultisol) of varying organic C (OC) and Fe(II) contents.

Journal ArticleDOI
TL;DR: The previous estimation of CO2 fluxes from carbonates by N fertilization and from liming of acidic soils is possibly an underestimation and consequently, the contribution of SIC to atmospheric CO2 is more important than previously thought.
Abstract: CO2 production from soil inorganic carbon (SIC) by neutralization of nitrogen (N) fertilization-induced acidity is globally relevant. Here we analyzed factors that may affect CO2 production from SIC after N fertilization: (1) buffering capacity of soil organic matter and of clays, (2) increasing crop growth and C input belowground by N fertilization, (3) acidity localization at the fertilization point, (4) SIC localization in the sub-soil, (5) application of CaO and basic slag instead of lime, (6) inability of farmers in low income countries to apply lime. We conclude that our previous estimation of CO2 fluxes from carbonates by N fertilization (7.5×1012 g C y-1 ) and from liming of acidic soils (273×1012 g C y-1 ) is possibly an underestimation and consequently, the contribution of SIC to atmospheric CO2 is more important than previously thought. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
01 Jun 2019-Geoderma
TL;DR: In this paper, the authors measured the activity and variety of extracellular enzymes temporally, and found that the response of priming to temperature was mediated by the activity of different extracellar enzymes, and that priming at lower temperature gradually exceeded those at higher temperature.