scispace - formally typeset
Search or ask a question
Institution

Applied Biosystems

About: Applied Biosystems is a based out in . It is known for research contribution in the topics: Mass spectrometry & Nucleic acid. The organization has 1521 authors who have published 1579 publications receiving 285423 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA.
Abstract: We have used two new dye sets for automated dye-labeled terminator DNA sequencing. One set consists of four, 4,7-dichlororhodamine dyes (d-rhodamines). The second set consists of energy-transfer dyes that use the 5-carboxy-d-rhodamine dyes as acceptor dyes and the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein as the donor dye. Both dye sets utilize a new linker between the dye and the nucleotide, and both provide more even peak heights in terminator sequencing than the dye-terminators consisting of unsubstituted rhodamine dyes. The unsubstituted rhodamine terminators produced electropherograms in which weak G peaks are observed after A peaks and occasionally C peaks. The number of weak G peaks has been reduced or eliminated with the new dye terminators. The general improvement in peak evenness improves accuracy for the automated base-calling software. The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA.

317 citations

Journal ArticleDOI
13 Oct 1983-Nature
TL;DR: It is demonstrated that p28SIS rapidly undergoes a series of discrete processing steps including dimer formation and proteolytic digestion to yield molecules structurally and immunologically resembling biologically active PDGF.
Abstract: The predicted amino acid sequence of the simian sarcoma virus (SSV) transforming gene product, p28SIS, closely corresponds to that of human platelet-derived growth factor (PDGF). We demonstrate that p28SIS rapidly undergoes a series of discrete processing steps including dimer formation and proteolytic digestion to yield molecules structurally and immunologically resembling biologically active PDGF.

317 citations

Journal ArticleDOI
TL;DR: This study provides one of the largest "reference" data set of gene expression measurements using TaqMan® Gene Expression Assay based real-time PCR technology and characterizes the limitations of microarrays.
Abstract: DNA microarrays are rapidly becoming a fundamental tool in discovery-based genomic and biomedical research. However, the reliability of the microarray results is being challenged due to the existence of different technologies and non-standard methods of data analysis and interpretation. In the absence of a "gold standard"/"reference method" for the gene expression measurements, studies evaluating and comparing the performance of various microarray platforms have often yielded subjective and conflicting conclusions. To address this issue we have conducted a large scale TaqMan® Gene Expression Assay based real-time PCR experiment and used this data set as the reference to evaluate the performance of two representative commercial microarray platforms. In this study, we analyzed the gene expression profiles of three human tissues: brain, lung, liver and one universal human reference sample (UHR) using two representative commercial long-oligonucleotide microarray platforms: (1) Applied Biosystems Human Genome Survey Microarrays (based on single-color detection); (2) Agilent Whole Human Genome Oligo Microarrays (based on two-color detection). 1,375 genes represented by both microarray platforms and spanning a wide dynamic range in gene expression levels, were selected for TaqMan® Gene Expression Assay based real-time PCR validation. For each platform, four technical replicates were performed on the same total RNA samples according to each manufacturer's standard protocols. For Agilent arrays, comparative hybridization was performed using incorporation of Cy5 for brain/lung/liver RNA and Cy3 for UHR RNA (common reference). Using the TaqMan® Gene Expression Assay based real-time PCR data set as the reference set, the performance of the two microarray platforms was evaluated focusing on the following criteria: (1) Sensitivity and accuracy in detection of expression; (2) Fold change correlation with real-time PCR data in pair-wise tissues as well as in gene expression profiles determined across all tissues; (3) Sensitivity and accuracy in detection of differential expression. Our study provides one of the largest "reference" data set of gene expression measurements using TaqMan® Gene Expression Assay based real-time PCR technology. This data set allowed us to use an alternative gene expression technology to evaluate the performance of different microarray platforms. We conclude that microarrays are indeed invaluable discovery tools with acceptable reliability for genome-wide gene expression screening, though validation of putative changes in gene expression remains advisable. Our study also characterizes the limitations of microarrays; understanding these limitations will enable researchers to more effectively evaluate microarray results in a more cautious and appropriate manner.

315 citations

Journal ArticleDOI
01 Jul 2009-Brain
TL;DR: Laser microdissection is used to isolate single DA neurons from the substantia nigra pars compacta of controls and subjects with idiopathic Parkinson's disease matched for age and postmortem interval followed by microarrays to analyse gene expression profiling, which provide a 'molecular fingerprint identity' of late-stage Parkinson's Disease DA neurons that will advance understanding of the molecular pathology of this disease.
Abstract: Parkinson’s disease is caused by a progressive loss of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta. Although the main cause of Parkinson’s disease remains unknown, there is increasing evidence that it is a complex disorder caused by a combination of genetic and environmental factors, which affect key signalling pathways in substantia nigra DA neurons. Insights into pathogenesis of Parkinson’s disease stem from in vitro and in vivo models and from postmortem analyses. Recent technological developments have added a new dimension to this research by determining gene expression profiles using high throughput microarray assays. However, many of the studies reported to date were based on whole midbrain dissections, which included cells other than DA neurons. Here, we have used laser microdissection to isolate single DA neurons from the substantia nigra pars compacta of controls and subjects with idiopathic Parkinson’s disease matched for age and postmortem interval followed by microarrays to analyse gene expression profiling. Our data confirm a dysregulation of several functional groups of genes involved in the Parkinson’s disease pathogenesis. In particular, we found prominent downregulation of members of the PARK gene family and dysregulation of multiple genes associated with programmed cell death and survival. In addition, genes for neurotransmitter and ion channel receptors were also deregulated, supporting the view that alterations in electrical activity might influence DA neuron function. Our data provide a ‘molecular fingerprint identity’ of late‐ stage Parkinson’s disease DA neurons that will advance our understanding of the molecular pathology of this disease.

314 citations

Journal ArticleDOI
TL;DR: Analysis of linkage and mutation studies in a large number of patients from those referred to the Italian Registry for Recurrent and Familial HUS/TTP provides compelling molecular evidence that genetically determined deficiencies in factor H are involved in both autosomal-dominant and autosome-recessive hemolytic uremic syndrome.
Abstract: The aim of the present study was to clarify whether factor H mutations were involved in genetic predisposition to hemolytic uremic syndrome, by performing linkage and mutation studies in a large number of patients from those referred to the Italian Registry for Recurrent and Familial HUS/TTP. PCR and Western blot analyses were conducted to characterize the biochemical consequences of the mutations. Five mutations in the factor H gene were identified. Three, identified in two families and in a sporadic case, are heterozygous point mutations within the most C-terminal short consensus repeat 20 (SCR20) of factor H, resulting in single amino acid substitutions. The other two mutations introduce premature stop codons that interrupt the translation of factor H. A heterozygous nonsense mutation was identified in SCR8 in one family, and a homozygous 24-bp deletion within SCR20 was identified in a Bedouin family with a recessive mode of inheritance. Reverse transcription-PCR analysis of cDNA from peripheral blood leukocytes from the Bedouin family showed that the deletion lowered factor H mRNA levels. Although heterozygous mutations were associated with normal factor H levels and incomplete penetrance of the disease, the homozygous mutation in the Bedouin family resulted in severe reduction of factor H levels accompanied by very early disease onset. These data provide compelling molecular evidence that genetically determined deficiencies in factor H are involved in both autosomal-dominant and autosomal-recessive hemolytic uremic syndrome and identify SCR20 as a hot spot for mutations in the disease. The mutations identified here give an important hint to the relevance of the C-terminus of factor H in the control of the alternative complement activation pathway.

302 citations


Authors

Showing all 1521 results

NameH-indexPapersCitations
Richard A. Gibbs172889249708
Friedrich C. Luft113109547619
Alexander N. Glazer7120821068
Vineet Bafna6823642574
Kevin R. Coombes6330823592
Darryl J. Pappin6117029409
Mark D. Johnson6028916103
György Marko-Varga5640912600
Paul Thomas5612844810
Gerald Zon5525611126
Michael W. Hunkapiller5113029756
Bjarni V. Halldorsson5114513180
David H. Hawke501579824
Ellson Y. Chen507128836
Sridhar Hannenhalli4916221959
Network Information
Related Institutions (5)
Genentech
17.1K papers, 1.4M citations

88% related

National Institutes of Health
297.8K papers, 21.3M citations

86% related

Scripps Research Institute
32.8K papers, 2.9M citations

86% related

Hoffmann-La Roche
43K papers, 1.6M citations

85% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20182
20171
20164
20152
20147
201313