scispace - formally typeset
Search or ask a question

Showing papers by "Bharathiar University published in 2015"


Journal ArticleDOI
TL;DR: The history of dressings from its earliest inception to the current status is traced and the advantage and limitations of the dressing materials are discussed.
Abstract: Wound healing is a dynamic and complex process which requires suitable environment to promote healing process. With the advancement in technology, more than 3000 products have been developed to treat different types of wounds by targeting various aspects of healing process. The present review traces the history of dressings from its earliest inception to the current status and also discusses the advantage and limitations of the dressing materials.

883 citations


Journal ArticleDOI
TL;DR: The scope of this review involves the various strategies involved in targeted therapy like-monoclonal antibodies, prodrug, small molecule inhibitors and nano-particulate antibody conjugates.
Abstract: Cancer is a multifactorial disease and is one of the leading causes of death worldwide. The contributing factors include specific genetic background, chronic exposure to various environmental stresses and improper diet. All these risk factors lead to the accumulation of molecular changes or mutations in some important proteins in cells which contributes to the initiation of carcinogenesis. Chemotherapy is an effective treatment against cancer but undesirable chemotherapy reactions and the development of resistance to drugs which results in multi-drug resistance (MDR) are the major obstacles in cancer chemotherapy. Strategies which are in practice with limited success include alternative formulations e.g., liposomes, resistance modulation e.g., PSC833, antidotes/toxicity modifiers e.g., ICRF-187 and gene therapy. Targeted therapy is gaining importance due to its specificity towards cancer cells while sparing toxicity to off-target cells. The scope of this review involves the various strategies involved in targeted therapy like-monoclonal antibodies, prodrug, small molecule inhibitors and nano-particulate antibody conjugates.

293 citations


Journal ArticleDOI
TL;DR: This paper explains sufficient condition for the existence and uniform stability analysis of fractional-order complex-valued neural networks with constant time delays.
Abstract: This paper deals with the problem of existence and uniform stability analysis of fractional-order complex-valued neural networks with constant time delays. Complex-valued recurrent neural networks is an extension of real-valued recurrent neural networks that includes complex-valued states, connection weights, or activation functions. This paper explains sufficient condition for the existence and uniform stability analysis of such networks. Three numerical simulations are delineated to substantiate the effectiveness of the theoretical results.

232 citations


Journal ArticleDOI
TL;DR: Photophysical measurements on dye-grafted TiO2 films reveal that the additional thiophene unit in dye 3 enhances the electron injection efficiency, in agreement with the high quantum efficiency.
Abstract: A new series of metal-free organic chromophores (TPA-TTAR-A (1), TPA-T-TTAR-A (2), TPA-TTAR-T-A (3), and TPA-T-TTAR-T-A (4)) are synthesized for application in dye-sensitized solar cells (DSSC) based on a donor-π-bridge-acceptor (D−π–A) design. Here a simple triphenylamine (TPA) moiety serves as the electron donor, a cyanoacrylic acid as the electron acceptor and anchoring group, and a novel tetrathienoacene (TTA) as the π-bridge unit. Because of the extensively conjugated TTA π-bridge, these dyes exhibit high extinction coefficients (4.5–5.2 × 104 M–1 cm–1). By strategically inserting a thiophene spacer on the donor or acceptor side of the molecules, the electronic structures of these TTA-based dyes can be readily tuned. Furthermore, addition of a thiophene spacer has a significant influence on the dye orientation and self-assembly modality on TiO2 surfaces. The insertion of a thiophene between the π-bridge and the cyanoacrylic acid anchoring group in TPA-TTAR-T-A (dye 3) promotes more vertical dye orien...

232 citations



Journal ArticleDOI
TL;DR: This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools.
Abstract: Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV–vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7 %, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools.

198 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied the input-to-state stability analysis for a class of impulsive stochastic Cohen-Grossberg neural networks with mixed delays and obtained sufficient conditions to ensure that the considered system with/without impulse control is mean-square exponentially stable.
Abstract: In this paper, we study an issue of input-to-state stability analysis for a class of impulsive stochastic Cohen–Grossberg neural networks with mixed delays. The mixed delays consist of varying delays and continuously distributed delays. To the best of our knowledge, the input-to-state stability problem for this class of stochastic system has still not been solved, despite its practical importance. The main aim of this paper is to fill the gap. By constricting several novel Lyapunov–Krasovskii functionals and using some techniques such as the It $$\hat{o}$$ formula, Dynkin formula, impulse theory, stochastic analysis theory, and the mathematical induction, we obtain some new sufficient conditions to ensure that the considered system with/without impulse control is mean-square exponentially input-to-state stable. Moreover, the obtained results are illustrated well with two numerical examples and their simulations.

196 citations


Journal ArticleDOI
01 Jul 2015
TL;DR: This study looks into the recent applications of Big Data technologies in education and presents a review of literature available on Educational Data Mining and Learning Analytics.
Abstract: The usage of learning management systems in education has been increasing in the last few years. Students have started using mobile phones, primarily smart phones that have become a part of their daily life, to access online content. Student's online activities generate enormous amount of unused data that are wasted as traditional learning analytics are not capable of processing them. This has resulted in the penetration of Big Data technologies and tools into education, to process the large amount of data involved. This study looks into the recent applications of Big Data technologies in education and presents a review of literature available on Educational Data Mining and Learning Analytics.

187 citations


Journal ArticleDOI
TL;DR: This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools.

180 citations


Journal ArticleDOI
TL;DR: Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti and further research on structure–activity relationships of AgNP against other d Dengue serotypes is urgently required.
Abstract: Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required.

179 citations


Journal ArticleDOI
TL;DR: In this paper, the ternary MnFe2O4/graphene/polyaniline (PANI) composite was successfully prepared for the negative electrode in hybrid supercapacitors.

Journal ArticleDOI
TL;DR: In this paper, a hybrid composite nanospindles (CNSs) with enhanced visible light-driven photocatalytic activity and good supercapacitive cycling stability has been designed for use in wastewater treatment and energy storage applications.
Abstract: Hybrid CeO2/Fe2O3 composite nanospindles (CNSs) are synthesized by a simple and cost effective co-precipitation method. CeO2/Fe2O3 CNSs used as an efficient recyclable photocatalyst for degrading Eosin Yellow (EY) dye under visible light irradiation possess a high degradation rate of 98% after 25 min. The estimated electrical energy efficiency of CeO2/Fe2O3 CNSs shows the consumption of less energy (6.588 kW h m−3 per order) in degrading EY. Besides, the CeO2/Fe2O3 CNS exhibits a specific capacitance of 142.6 F g−1 at a scan rate of 5 mV s−1. Moreover, the composite displays an excellent capacitance retention of 94.8% after 1000 cycles. This newly designed CeO2/Fe2O3 CNS with enhanced visible light-driven photocatalytic activity and good supercapacitive cycling stability has great potential for use in wastewater treatment and energy storage applications.

Journal ArticleDOI
TL;DR: Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors.
Abstract: Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC50 and LC90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors.

Journal ArticleDOI
TL;DR: In this paper, the surface chemistry and physical properties of the functionalized ball milled graphene were studied. And an electrochemical sensor was developed based on the prepared nanocomposite loaded on a glassy carbon electrode (GCE).
Abstract: We report a versatile and eco-friendly approach to prepare large-scale defect-free high quality graphene nanosheets from graphite by simple mechanochemical ball milling in the presence of KMnO4 and aspartic acid. Two foremost concerns such as surface chemistry and physical properties must be considered for potential application of the functionalized ball milled graphene. The surface chemistry was studied for the functionalized graphene anchored with 10, 20 and 30 wt% of Fe3O4 nanoparticles prepared by a simple hydrothermal process. The obtained samples were systematically studied by a variety of analytical and spectroscopic techniques to understand the structural, morphological, functional, compositional, electrical and magnetic properties. An electrochemical sensor was developed based on the prepared nanocomposite loaded on a glassy carbon electrode (GCE). The sensor based on the modified GCE exhibits good electrocatalytic activity, high sensitivity and stability for the detection of nitrite. The current response was linear over two different ranges between 0.5 and 58 μM with a wide range of 0.5 μM–9.5 mM, and low detection limit and sensitivity of 0.03 μM and 202.5 μA mM−1 cm−2 respectively. In addition, validation of the applicability of the prepared biosensor was carried out by detecting nitrite in tap, river and rain water samples.

Journal ArticleDOI
01 Aug 2015-Carbon
TL;DR: In this article, the reduced graphene oxide (rGO) is prepared by simple and eco-friendly hydrothermal reduction method and the performance of the rGO-based supercapacitors is investigated.

Journal ArticleDOI
TL;DR: The analysis in the paper employs results from the theory of differential equations with discontinuous right-hand side as introduced by Filippov to derive several new sufficient conditions for global dissipativity, global exponential dissipativity and strictly ( Q, S, R ) -dissipativity.

Journal ArticleDOI
TL;DR: This study showed that seaweed-synthesized silver nanoparticles can be proposed in synergy with biological control agents against Culex larvae, since their use leads to little detrimental effects against aquatic predators, such as copepods.
Abstract: Nearly1.4billionpeoplein73countriesworldwide are threatened by lymphatic filariasis, a parasitic infection that leadstoadiseasecommonlyknownaselephantiasis.Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is rep- resented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparti- cles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We pro- posed a novel methodof seaweed-mediatedsynthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then,we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against

Journal ArticleDOI
TL;DR: In this article, a polyethylene glycol (PEG) assisted solution combustion method was used to extract CoFe2O4 nanoparticles using the X-ray diffraction pattern, Fourier transform infrared and Raman spectra.
Abstract: CoFe2O4 nanoparticles were prepared using a polyethylene glycol (PEG) assisted solution combustion method. The X-ray diffraction pattern, Fourier transform infrared and Raman spectra revealed the single phase formation of CoFe2O4 particles. Transmission electron microscopy (TEM) images revealed nanosized particles less than 10 nm in size. The calculated voltammetry specific capacitance of the CoFe2O4 electrode was 195 F g−1 at 1 mV s−1. The Power's law suggests the capacitive mechanism is dominant over an intercalation mechanism, while the maximum number of charges accommodated in the inner surface of the electrode, is given by the Trasatti plot. The fabricated rGO based hybrid supercapacitor (CoFe2O4‖rGO) provides a good specific capacitance (38 F g−1) and energy density (12.14 W h kg−1) at 3 mA with good cycle life, and the serially connected asymmetric supercapacitor device powers the light emitting diode for 10 minutes.

Journal ArticleDOI
TL;DR: The tremendous analytical parameters of the reported sensor surpass those of related modified electrodes and are promising for practical industrial applications.
Abstract: A novel hydrothermal process was used for the preparation of hydroxyapatite (HAp) nanorods on two-dimensional reduced graphene oxides (RGO). The hydrothermal reaction temperature improves the crystallinity of HAp and partially reduces graphene oxide (GO) to RGO. The crystalline structure, chemical composition and morphology of the prepared nanocomposites were characterized by using various analytical techniques. Nanorods of HAp with a diameter and length of ∼32 and 60–85 nm were grown on basal planes and edges of the layered RGO sheets. The estimated specific surface area and pore-size distribution are 120 m2 g−1 and 5.6 nm, respectively. We also report the direct electrochemistry of glucose oxidase (GOx) on 1D HAp-on-2D RGO nanocomposite-modified glassy carbon electrode (GCE) for glucose sensing. The electrocatalytic and electroanalytical applications of the proposed RGO/HAp/GOx-modified GCE were studied by cyclic voltammetry (CV) and amperometry. The increased electron rate constant of 3.50 s−1 was obtained for the modified GCE. The reported biosensor exhibits a superior detection limit and higher sensitivity ca. 0.03 mM and 16.9 μA mM−1 cm−2, respectively, with a wide linear range of 0.1–11.5 mM. The tremendous analytical parameters of the reported sensor surpass those of related modified electrodes and are promising for practical industrial applications.

Journal ArticleDOI
TL;DR: In this paper, a fractional dynamical system of predator-prey with Holling type-II functional response and time delay is studied, and the presence of fractional order in the delayed differential model improves the stability of the solutions and enrich the dynamics of the model.
Abstract: In this paper, a fractional dynamical system of predator–prey with Holling type-II functional response and time delay is studied. Local and global stability of existence steady states and Hopf bifurcation with respect to the delay is investigated, with fractional-order $$0< \alpha \le 1$$ . It is found that Hopf bifurcation occurs when the delay passes through a sequence of critical values. Unconditionally, stable implicit scheme for the numerical simulations of the fractional-order delay differential model is introduced. The numerical simulations show the effectiveness of the numerical method and confirm the theoretical results. The presence of fractional order in the delayed differential model improves the stability of the solutions and enrich the dynamics of the model.

Journal ArticleDOI
TL;DR: The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review.
Abstract: Epigenetic silencing is a natural phenomenon in which the expression of gene is regulated through modifications of DNA, RNA or histone proteins. It is a mechanism for defending host genomes against the effects of transposable element, viral infection and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was discovery of silencing in transgenic tobacco plants due to interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, i.e. transcriptional gene silencing (TGS), which is associated with heavy methylation of promoter regions and blocks the transcription of transgene. The basic mechanism underlying post-transcriptional gene silencing (PTGS) is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of a major concern in transgenic technology used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes are required. The current status of epigenetic silencing in transgenic technology has been discussed and summarized in this mini-review.

Journal ArticleDOI
TL;DR: Silver nanoparticles synthesized using the aqueous extract of the seaweed Sargassum muticum for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools.
Abstract: Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this research, silver nanoparticles (AgNP) were synthesized using the aqueous extract of the seaweed Sargassum muticum. The production of AgNP was confirmed by surface plasmon resonance band illustrated in UV–vis spectrophotometry. AgNP were characterized by FTIR, SEM, EDX, and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and mean size was 43–79 nm. Toxicity of AgNP was assessed against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. In laboratory, AgNP were highly toxic against larvae and pupae of the three mosquito species. Maximum efficacy was observed against A. stephensi larvae, with LC50 ranging from 16.156 ppm (larva I) to 28.881 ppm (pupa). In the field, a single treatment with AgNP (10 × LC50) in water storage reservoirs was effective against the three mosquito vectors, allowing complete elimination of larval populations after 72 h. In ovicidal experiments, egg hatchability was reduced by 100 % after treatment with 30 ppm of AgNP. Ovideterrence assays highlighted that 10 ppm of AgNP reduced oviposition rates of more than 70 % in A. aegypti, A. stephensi, and C. quinquefasciatus (OAI = −0.61, −0.63, and −0.58, respectively). Antibacterial properties of AgNP were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. AgNP tested at 50 ppm evoked growth inhibition zones larger than 5 mm in all tested bacteria. Overall, the chance to use S. muticum-synthesized AgNP for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools. This is the first report about ovicidal activity of metal nanoparticles against mosquito vectors.

Journal ArticleDOI
TL;DR: In this article, a nanostructured CuO-ZnO nanocomposites were successfully synthesized for different Zn2+ concentrations by reflux condensation method without using any surfactant, and their photocatalytic activity was evaluated using methyl orange and methylene blue dyes under UV light irradiation.

Journal ArticleDOI
TL;DR: Structural–activity relationship indicates that the degree of saturation, the side chain length, and the geometric isomerism of fatty acids appear to play a role in determining the fatty acid toxicity.
Abstract: Aedes aegypti and Aedes albopictus and Culex pipiens pallens mosquitoes transmit dengue fever and West Nile virus diseases, respectively. This study was conducted to determine the toxicity and mechanism of action of four flavonoids and two fatty acids from Millettia pinnata (Fabaceae) seed as well as six pure fatty acids and four fatty acid esters toward third instar larvae from insecticide-susceptible C. pipiens pallens and A. aegypti as well as wild A. albopictus. Efficacy of 12 experimental liquid formulations containing M. pinnata seed methanol extract and hydrodistillate (0.5–10.0% liquids) was also assessed. The contact toxicities of all compounds and 12 formulations were compared with those of two larvicides, temephos and fenthion and the commercial temephos 200 g/L emulsifiable concentrate (EC). The possible mode of larvicidal action of the constituents was elucidated using biochemical methods. Larval mortality and cAMP level were analyzed by the Bonferroni multiple-comparison method. Potent toxicity was produced by karanjin, oleic acid, karanjachromene, linoleic acid, linolenic acid, pongamol, pongarotene, and elaidic acid toward C. pipiens pallens larvae (24 h LC50, 14.61–28.22 mg/L) and A. aegypti larvae (16.13–37.61 mg/L). Against wild A. albopictus larvae, oleic acid (LC50, 18.79 mg/L) and karanjin (35.26 mg/L) exhibited potent toxicity. All constituents were less toxic than either temephos or fenthion. Structure–activity relationship indicates that the degree of saturation, the side chain length, and the geometric isomerism of fatty acids appear to play a role in determining the fatty acid toxicity. Acetylcholinesterase (AChE) is the main site of action of the flavonoids, oleic acid, and palmitic acid. The mechanism of larvicidal action of elaidic acid, arachidic acid, and behenic acid might be due to interference with the octopaminergic system. Linoleic acid and linolenic acid might act on both AChE and octopaminergic receptor. M. pinnata seed extract or hydrodistillate applied as 10% liquid provided 100% mortality toward the three mosquito species larvae and the efficacy of the liquids was comparable to that of temephos 200 g/L EC. Further studies will warrant possible applications of M. pinnata seed-derived products as potential larvicides for the control of mosquito populations.

Journal ArticleDOI
TL;DR: In this paper, a low temperature solution combustion synthesis (SCS) method was used to prepare α-Al2O3 (Corundum) nanoparticles, which showed substantial effect on all the four bacterial strains.

Journal ArticleDOI
TL;DR: In this study, FT-IR,FT-Raman, NMR and UV spectra of 1-phenyl-1-propanol, an intermediate of anti-depressant drug fluoxetine, has been investigated and NLO properties related to polarizability and hyperpolarizability are discussed.

Journal ArticleDOI
TL;DR: This study investigates the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae.
Abstract: Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30–70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I–IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control.

Journal ArticleDOI
TL;DR: Overall, neem cake can be proposed as an eco-friendly and low-cost source of chemicals to build newer and safer control tools against mosquito vectors.
Abstract: Mosquitoes (Diptera: Culicidae) represent an important threat to millions of people worldwide, since they act as vectors for important pathogens, such as malaria, yellow fever, dengue and West Nile. Control programmes mainly rely on chemical treatments against larvae, indoor residual spraying and insecticide-treated bed nets. In recent years, huge efforts have been carried out to propose new eco-friendly alternatives, with a special focus on the evaluation of plant-borne mosquitocidal compounds. Major examples are neem-based products (Azadirachta indica A. Juss, Meliaceae) that have been proven as really effective against a huge range of pests of medical and veterinary importance, including mosquitoes. Recent research highlighted that neem cake, a cheap by-product from neem oil extraction, is an important source of mosquitocidal metabolites. In this review, we examined (i) the latest achievements about neem cake metabolomics with special reference to nor-terpenoid and related content; (ii) the neem cake ovicidal, larvicidal and pupicidal toxicity against Aedes, Anopheles and Culex mosquito vectors; (iii) its non-target effects against vertebrates; and (iv) its oviposition deterrence effects on mosquito females. Overall, neem cake can be proposed as an eco-friendly and low-cost source of chemicals to build newer and safer control tools against mosquito vectors.

Journal ArticleDOI
TL;DR: In this article, the authors used image processing technique to detect the maturity stage of fresh banana fruit by its color and size value of their images precisely, and two classifier algorithms namely, mean color intensity algorithm and area algorithm were developed and their accuracy on maturity detection was assessed.
Abstract: Maturity stage of fresh banana fruit is an important factor that affects the fruit quality during ripening and marketability after ripening. The ability to identify maturity of fresh banana fruit will be a great support for farmers to optimize harvesting phase which helps to avoid harvesting either under-matured or over-matured banana. This study attempted to use image processing technique to detect the maturity stage of fresh banana fruit by its color and size value of their images precisely. A total of 120 images comprising 40 images from each stage such as under-mature, mature and over-mature were used for developing algorithm and accuracy prediction. The mean color intensity from histogram; area, perimeter, major axis length and minor axis length from the size values, were extracted from the calibration images. Analysis of variance between each maturity stage on these features indicated that the mean color intensity and area features were more significant in predicting the maturity of banana fruit. Hence, two classifier algorithms namely, mean color intensity algorithm and area algorithm were developed and their accuracy on maturity detection was assessed. The mean color intensity algorithm showed 99.1 % accuracy in classifying the banana fruit maturity. The area algorithm classified the under-mature fruit at 85 % accuracy. Hence the maturity assessment technique proposed in this paper could be used commercially to develop a field based complete automatic detection system to take decision on the right time of harvest by the banana growers.

Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of stability analysis of fractional-order complex-valued Hopfield neural networks with time delays, and derived sufficient conditions for the stability of considered systems with different ring structures.
Abstract: In this paper, we consider the problem of stability analysis of fractional-order complex-valued Hopfield neural networks with time delays, which have been extensively investigated Moreover, the fractional-order complex-valued Hopfield neural networks with hub structure and time delays are studied, and two types of fractional-order complex-valued Hopfield neural networks with different ring structures and time delays are also discussed Some sufficient conditions are derived by using stability theorem of linear fractional-order systems to ensure the stability of the considered systems with hub structure In addition, some sufficient conditions for the stability of considered systems with different ring structures are also obtained Finally, three numerical examples are given to illustrate the effectiveness of our theoretical results