scispace - formally typeset
Search or ask a question
Institution

Chalk River Laboratories

Other
About: Chalk River Laboratories is a based out in . It is known for research contribution in the topics: Neutron diffraction & Neutron scattering. The organization has 2297 authors who have published 2700 publications receiving 73287 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider core polarisation, pairing correlations and higher-order phenomena to explain the bulk of the retardation experimentally observeddeal -in measurements of allowed Gamow-Teller β-decay in proton-rich nuclei close to regions of double magicity at 100Sn and 146Gd.

56 citations

Journal ArticleDOI
01 May 1984

56 citations

Journal ArticleDOI
TL;DR: In this paper, isotopic and chemical hydrograph separation indicated three runoff components: pre-melt subsurface flow, new (event) water, and direct precipitation on to saturated areas (DPS) during spring runoff in a small headwater basin using field mapping and direct tracing of saturated areas.
Abstract: Current conceptual runoff models hypothesize that stormflow generation on the Canadian Shield is a combination of subsurface stormflow and saturation overland flow. This concept was tested during spring runoff in a small (3.3 ha) headwater basin using: (1) isotopic and chemical hydrograph separation and (2) field mapping and direct tracing of saturated areas. Isotopic and chemical hydrograph separation indicated three runoff components: (1) pre-melt subsurface flow; (2) subsurface flow of new (event) water; and (3) direct precipitation on to saturated areas (DPS). During early thaw-freeze cycles, their relative contributions to total flow remained constant (65 per cent, 30 per cent, and 5 per cent respectively). It is hypothesized that lateral flow along the bedrock/mineral soil interface, possibly through macropores, supplied large volumes of subsurface flow (of both old and new water) rapidly to the stream channel. Much higher contributions of DPS were observed during an intensive rain-on-snow event (15 per cent of total flow). Mapping and direct tracing of saturated areas using lithium bromide, suggested that saturated area size was positively correlated to stream discharge but its response lagged behind that of discharge. These observations suggest that the runoff mechanisms, and hence the sources of stream flow, will vary depending on storm characteristics.

56 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the thermal diffusivity and specific heat of simulated high-burnup UO 2 fuel with an equivalent burnup of 3 and 8 at% and found that the reduction in thermal conductivity was approximately linear with burnup.

56 citations

Journal ArticleDOI
TL;DR: In this article, a strategy is proposed to enhance the microstructure and mechanical properties of Mg-Zn alloys by combining microalloying additions of the rare earth element Ce and the non-rare earth element Ca.
Abstract: A strategy is proposed to enhance the microstructure and mechanical properties of Mg–Zn alloys by combining microalloying additions of the rare earth element Ce and the non-rare earth element Ca. The double additions of Ce–Ca are found to significantly increase tensile elongation compared to binary Mg–Zn, or single additions of either Ce or Ca. Microstructure analysis reveals that the Ce–Ca additions increase ductility by modifying texture and refining grain size. Texture modification is attributed to solute effects from the microalloying elements, particularly Ca, while grain refinement is additionally influenced by a fine dispersion of Mg6Ca2Zn3 precipitates that form during rolling and pin grain boundaries. The microalloying element additions also lead to large secondary phase particles in the alloys, which can limit ductility enhancement by promoting early fracture. By scaling Zn content in the Mg–Zn–Ce–Ca alloys, the Mg6Ca2Zn3 phase fraction and Zn solute content can be controlled for optimum ductility or strengthening potential.

56 citations


Authors

Showing all 2298 results

NameH-indexPapersCitations
Michael D. Guiver7828820540
Robert J. Birgeneau7858722686
Mike D. Flannigan7121121327
Martin T. Dove6139614767
Luis Rodrigo5834112963
André Longtin5626016372
David Mitlin5619615479
John Katsaras552209263
John E. Greedan5539112171
Gang Li484067713
Matthew G. Tucker452247288
Bruce D. Gaulin452846698
Erick J. Dufourc431445882
Norbert Kučerka431197319
Stephen J. Skinner421948522
Network Information
Related Institutions (5)
Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

86% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Paul Scherrer Institute
23.9K papers, 890.1K citations

84% related

Argonne National Laboratory
64.3K papers, 2.4M citations

83% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202284
202176
202072
201974
2018104