scispace - formally typeset
Search or ask a question
Institution

Chalk River Laboratories

Other
About: Chalk River Laboratories is a based out in . It is known for research contribution in the topics: Neutron diffraction & Neutron scattering. The organization has 2297 authors who have published 2700 publications receiving 73287 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the elastoplastic self-consistent (EPSC) theory is used to calculate which crystallographic reflections are least sensitive to intergranular effects under uniaxial tension.
Abstract: Measurements of the strain response to applied stress in polycrystalline MONEL-400 by neutron diffraction are modeled with the elastoplastic self-consistent (EPSC) theory. The strains in the different crystallographic orientations of grains, which are generated in the tensile test experiments, are shown to be caused by the anisotropy of elastic and plastic deformation with respect to crystallographic orientation. On the basis of the description of the results in the theory, the origin of a number of anomalies of a general nature in measurements by both neutron and X-ray diffraction can be understood. The theory is used to calculate which crystallographic reflections are least sensitive to intergranular effects under uniaxial tension.

29 citations

Journal ArticleDOI
TL;DR: Investigation of a Jacobian‐free Newton–Krylov (JFNK) method to obtain a fully implicit solution for two‐phase flows and comparison of the numerical predictions with those obtained by the Canadian Algorithm for Thermaulhydraulics Network Analysis 4.
Abstract: Summary The current paper is focused on investigating a Jacobian-free Newton–Krylov (JFNK) method to obtain a fully implicit solution for two-phase flows. In the JFNK formulation, the Jacobian matrix is not directly evaluated, potentially leading to major computational savings compared with a simple Newton's solver. The objectives of the present paper are as follows: (i) application of the JFNK method to two-fluid models; (ii) investigation of the advantages and disadvantages of the fully implicit JFNK method compared with commonly used explicit formulations and implicit Newton–Krylov calculations using the determination of the Jacobian matrix; and (iii) comparison of the numerical predictions with those obtained by the Canadian Algorithm for Thermaulhydraulics Network Analysis 4. Two well-known benchmarks are considered, the water faucet and the oscillating manometer. An isentropic two-fluid model is selected. Time discretization is performed using a backward Euler scheme. A Crank–Nicolson scheme is also implemented to check the effect of temporal discretization on the predictions. Advection Upstream Splitting Method+ is applied to the convective fluxes. The source terms are discretized using a central differencing scheme. One explicit and two implicit formulations, one with Newton's solver with the Jacobian matrix and one with JFNK, are implemented. A detailed grid and model parameter sensitivity analysis is performed. For both cases, the JFNK predictions are in good agreement with the analytical solutions and explicit profiles. Further, stable results can be achieved using high CFL numbers up to 200 with a suitable choice of JFNK parameters. The computational time is significantly reduced by JFNK compared with the calculations requiring the determination of the Jacobian matrix. Copyright © 2015 John Wiley & Sons, Ltd.

29 citations

Journal ArticleDOI
TL;DR: The results demonstrated that a spontaneously forming, nanosized ULVs loaded with a high payload of Gd can selectively target and image, using MR and optical imaging, brain tumor vessels when functionalized with anti-IGFBP7 single domain antibodies.
Abstract: Molecular imaging enables the non-invasive investigation of cellular and molecular processes. Although there are challenges to overcome, the development of targeted contrast agents to increase the sensitivity of molecular imaging techniques is essential for their clinical translation. In this study, spontaneously forming, small unilamellar vesicles (sULVs) (30 nm diameter) were used as a platform to build a bimodal (i.e., optical and magnetic resonance imaging (MRI)) targeted contrast agent for the molecular imaging of brain tumors. sULVs were loaded with a gadolinium (Gd) chelated lipid (Gd-DPTA-BOA), functionalized with targeting antibodies (anti-EGFR monoclonal and anti-IGFBP7 single domain), and incorporated a near infrared dye (Cy5.5). The resultant sULVs were characterized in vitro using small angle neutron scattering (SANS), phantom MRI and dynamic light scattering (DLS). Antibody targeted and nontargeted Gd loaded sULVs labeled with Cy5.5 were assessed in vivo in a brain tumor model in mice using time domain optical imaging and MRI. The results demonstrated that a spontaneously forming, nanosized ULVs loaded with a high payload of Gd can selectively target and image, using MR and optical imaging, brain tumor vessels when functionalized with anti-IGFBP7 single domain antibodies. The unique features of these targeted sULVs make them promising molecular MRI contrast agents.

29 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined residual strains and deformation texture related to the Luders bands phenomenon in uniaxially deformed mild steel samples and found that the shape and texture of the lugs depended on the sample thickness.

29 citations

Book ChapterDOI
TL;DR: In this article, the axial-vector and pseudoscalar coupling constants in the nucleon are determined from neutron decay and muon capture on the proton respectively, and evidence for these coupling constants being reduced relative to their free-nucleon values is discussed.
Abstract: Beta-decay and muon-capture experiments in nuclei are reviewed. The conserved vector current hypothesis is confirmed through the observed constancy of the vector coupling constant determined from the superallowed Fermi transitions and from the measurement of the weak-magnetism term in mirror Gamow-Teller transitions. The axial-vector and pseudoscalar coupling constants in the nucleon are determined from neutron decay and muon capture on the proton respectively. In finite nuclei, evidence for these coupling constants being reduced relative to their free-nucleon values is discussed. Meson-exchange currents are shown to be an important correction to the time-like part of the axial current as evident in first-forbidden beta decays. Tests of the Standard Model are discussed, as well as extensions beyond it involving right-hand currents and scalar interactions.

29 citations


Authors

Showing all 2298 results

NameH-indexPapersCitations
Michael D. Guiver7828820540
Robert J. Birgeneau7858722686
Mike D. Flannigan7121121327
Martin T. Dove6139614767
Luis Rodrigo5834112963
André Longtin5626016372
David Mitlin5619615479
John Katsaras552209263
John E. Greedan5539112171
Gang Li484067713
Matthew G. Tucker452247288
Bruce D. Gaulin452846698
Erick J. Dufourc431445882
Norbert Kučerka431197319
Stephen J. Skinner421948522
Network Information
Related Institutions (5)
Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

86% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Paul Scherrer Institute
23.9K papers, 890.1K citations

84% related

Argonne National Laboratory
64.3K papers, 2.4M citations

83% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202284
202176
202072
201974
2018104