scispace - formally typeset
Search or ask a question

Showing papers by "Cooperative Institute for Research in the Atmosphere published in 2014"


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and synthesis of some of the most notable types of land cover changes and their impacts on climate, including agriculture, deforestation and afforestation, desertification, and urbanization.
Abstract: Land cover changes (LCCs) play an important role in the climate system. Research over recent decades highlights the impacts of these changes on atmospheric temperature, humidity, cloud cover, circulation, and precipitation. These impacts range from the local- and regional-scale to sub-continental and global-scale. It has been found that the impacts of regional-scale LCC in one area may also be manifested in other parts of the world as a climatic teleconnection. In light of these findings, this article provides an overview and synthesis of some of the most notable types of LCC and their impacts on climate. These LCC types include agriculture, deforestation and afforestation, desertification, and urbanization. In addition, this article provides a discussion on challenges to, and future research directions in, assessing the climatic impacts of LCC.

560 citations


Journal ArticleDOI
TL;DR: The mean absolute error of the official tropical cyclone (TC) intensity forecasts from the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) shows limited evidence of improvement over the past two decades.
Abstract: The mean absolute error of the official tropical cyclone (TC) intensity forecasts from the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) shows limited evidence of improvement over the past two decades. This result has sometimes erroneously been used to conclude that little or no progress has been made in the TC intensity guidance models. This article documents statistically significant improvements in operational TC intensity guidance over the past 24 years (1989–2012) in four tropical cyclone basins (Atlantic, eastern North Pacific, western North Pacific, and Southern Hemisphere). Errors from the best available model have decreased at 1%–2% yr−1 at 24–72 h, with faster improvement rates at 96 and 120 h. Although these rates are only about one-third to one-half of the rates of reduction of the track forecast models, most are statistically significant at the 95% level. These error reductions resulted from improvements in statistical–dynamical intensity models and consensus tec...

344 citations


Journal ArticleDOI
TL;DR: In this paper, the authors estimate the monetary value of the human health benefits from air quality improvements due to US carbon abatement policies, and find that the benefits can offset 26-1,050% of the cost of mitigation policies.
Abstract: The near-term costs of greenhouse-gas emissions reduction may be offset by the air-quality co-benefits of mitigation policies. Now research estimates the monetary value of the human health benefits from air-quality improvements due to US carbon abatement policies, and finds that the benefits can offset 26–1,050% of the cost of mitigation policies.

214 citations


Journal ArticleDOI
TL;DR: In this article, a reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network.
Abstract: . A reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary-layer trace-gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures, and flow rates, that are inputs for automated alerts and quality control algorithms. Detailed and time-dependent uncertainty estimates have been constructed for all of the gases, and the uncertainty framework could be readily adapted to other species or analysis systems. The design emphasizes use of off-the-shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high-accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

187 citations


Journal ArticleDOI
TL;DR: In this article, storm-centered infrared (IR) imagery of tropical cyclones (TCs) is related to the 850-hPa mean tangential wind at a radius of 500km (V500) calculated from 6-hourly global numerical analyses for North Atlantic and eastern North Pacific TCs for 1995-2011.
Abstract: Storm-centered infrared (IR) imagery of tropical cyclones (TCs) is related to the 850-hPa mean tangential wind at a radius of 500km (V500) calculated from 6-hourly global numerical analyses for North Atlantic and eastern North Pacific TCs for 1995‐2011. V500 estimates are scaled using the climatological vortex decay rate beyond 500km to estimate the radius of 5kt (1kt 5 0.514ms 21 ) winds (R5) or TC size. A much larger historical record of TC-centered IR imagery (1978‐2011) is then used to estimate TC sizes and form a global TC size climatology. The basin-specific distributions of TC size reveal that, among other things, the eastern North Pacific TC basins have the smallest while western North Pacific have the largest TC size distributions. The life cycle of TC sizes with respect to maximum intensity shows that TC growth characteristics are different among the individual TC basins, with the North Atlantic composites showing continued growth after maximum intensity. Small TCs are generally located at lower latitudes, westward steering, and preferred in seasons when environmental low-level vorticity is suppressed. Large TCs are generally located at higher latitudes, poleward steering, and preferred in enhanced low-level vorticity environments. Postmaximum intensity growth of TCs occurs in regions associated with enhanced baroclinicity and TC recurvature, while those that do not grow much are associated with west movement, erratic storm tracks, and landfall at or near the time of maximum intensity. With respect to climate change, no significant long-term trends are found in the dataset of TC size.

184 citations


Journal ArticleDOI
TL;DR: The Cloud Processes of the Main Precipitation Systems in Brazil (CHUVA) project as discussed by the authors is an extension of the GPM-based global precipitation measurement system that aims to contribute to the understanding of cloud processes.
Abstract: CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belem, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of clo...

103 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared hourly Stage IV observations of precipitation occurrence to collocated observations from the 94-GHz CloudSat Cloud Profiling Radar, which provides excellent sensitivity to light and frozen precipitation.
Abstract: Because of its extensive quality control procedures and uniform space–time grid, the NCEP Stage IV merged Weather Surveillance Radar-1988 Doppler (WSR-88D) radar and surface rain gauge dataset is often considered to be the best long-term gridded dataset of precipitation observations covering the contiguous United States. Stage IV accumulations are employed in a variety of applications, and while the WSR-88D systems are well suited for observing heavy rain events that are likely to affect flooding, limitations in surface radar and gauge measurements can result in missed precipitation, especially near topography and in the western United States. This paper compares hourly Stage IV observations of precipitation occurrence to collocated observations from the 94-GHz CloudSat Cloud Profiling Radar, which provides excellent sensitivity to light and frozen precipitation. Statistics from 4 yr of comparisons show that the CloudSat observes precipitation considerably more frequently than the Stage IV dataset...

87 citations


Journal ArticleDOI
TL;DR: It is found that the human health benefits associated with changes in ozone concentrations are sensitive to resolution, and the benefits calculated at 36 km resolution agree, within errors, with thebenefits calculated using fine (12 km or finer) resolution modeling when using the current methodology for assessing policy decisions.
Abstract: . We evaluate how regional characteristics of population and background pollution might impact the selection of optimal air quality model resolution when calculating the human health impacts of changes to air quality. Using an approach consistent with air quality policy evaluation, we use a regional chemical transport model (CAMx) and a health benefit mapping program (BenMAP) to calculate the human health impacts associated with changes in ozone and fine particulate matter resulting from an emission reduction scenario. We evaluate this same scenario at 36, 12 and 4 km resolution for nine regions in the eastern US representing varied characteristics. We find that the human health benefits associated with changes in ozone concentrations are sensitive to resolution. This finding is especially strong in urban areas where we estimate that benefits calculated using coarse resolution results are on average two times greater than benefits calculated using finer scale results. In three urban areas we analyzed, results calculated using 36 km resolution modeling fell outside the uncertainty range of results calculated using finer scale modeling. In rural areas the influence of resolution is less pronounced with only an 8% increase in the estimated health impacts when using 36 km resolution over finer scales. In contrast, health benefits associated with changes in PM2.5 concentrations were not sensitive to resolution and did not follow a pattern based on any regional characteristics evaluated. The largest difference between the health impacts estimated using 36 km modeling results and either 12 or 4 km results was at most ±10% in any region. Several regions showed increases in estimated benefits as resolution increased (opposite the impact seen with ozone modeling), while some regions showed decreases in estimated benefits as resolution increased. In both cases, the dominant contribution was from secondary PM. Additionally, we found that the health impacts calculated using several individual concentration–response functions varied by a larger amount than the impacts calculated using results modeled at different resolutions. Given that changes in PM2.5 dominate the human health impacts, and given the uncertainty associated with human health response to changes in air pollution, we conclude that, when estimating the human health benefits associated with decreases in ozone and PM2.5 together, the benefits calculated at 36 km resolution agree, within errors, with the benefits calculated using fine (12 km or finer) resolution modeling when using the current methodology for assessing policy decisions.

85 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a method to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases.
Abstract: . GeoCARB is a proposed instrument to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases. The scanning options, spectral channels and noise characteristics of geoCARB and two descope options are described. The accuracy of concentrations from geoCARB data is investigated using end-to-end retrievals; spectra at the top of the atmosphere in the geoCARB bands are simulated with realistic trace gas profiles, meteorology, aerosol, cloud and surface properties, and then the concentrations of CO2, CH4 and CO are estimated from the spectra after addition of noise characteristic of geoCARB. The sensitivity of the algorithm to aerosol, the prior distributions assumed for the gases and the meteorology are investigated. The contiguous spatial sampling and fine temporal resolution of geoCARB open the possibility of monitoring localised sources such as power plants. Simulations of emissions from a power plant with a Gaussian plume are conducted to assess the accuracy with which the emission strength may be recovered from geoCARB spectra. Scenarios for "clean" and "dirty" power plants are examined. It is found that a reliable estimate of the emission rate is possible, especially for power plants that have particulate filters, by averaging emission rates estimated from multiple snapshots of the CO2 field surrounding the plant. The result holds even in the presence of partial cloud cover.

69 citations


Journal ArticleDOI
TL;DR: In this article, the authors used ambient light extinction coefficients (b ext ) estimated from speciated particulate concentrations measured by the IMPROVE (Interagency Monitoring of Protected Visual Environments) network.

67 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a vision for mitigating impacts of such weather and water extremes that is tailored to the unique meteorological conditions and user needs of the Western U.S. in the 21st Century.
Abstract: Recent and historical events illustrate the vulnerabilities of the U.S. west to extremes in precipitation that result from a range of meteorological phenomena. This vision provides an approach to mitigating impacts of such weather and water extremes that is tailored to the unique meteorological conditions and user needs of the Western U.S. in the 21st Century. It includes observations for tracking, predicting, and managing the occurrence and impacts of major storms and is informed by a range of user-requirements, workshops, scientific advances, and technological demonstrations. The vision recommends innovations and enhancements to existing monitoring networks for rain, snow, snowmelt, flood, and their hydrometeorological precursor conditions, including radars to monitor winds aloft and precipitation, soil moisture sensors, stream gages, and SNOTEL enhancements, as well as entirely new observational tools. Key limitations include monitoring the fuel for heavy precipitation, storms over the eastern Pacific, precipitation distributions, and snow and soil moisture conditions. This article presents motivation and context, and describes key components, an implementation strategy, and expected benefits. This document supports a Resolution of the Western States Water Council for addressing extreme events.

Journal ArticleDOI
TL;DR: The first simultaneous spaceborne observations of concentric gravity wave patterns in the stratosphere and mesosphere over the Indian Ocean excited by tropical cyclone Mahasen were reported in this article.

Journal ArticleDOI
TL;DR: In this paper, the authors quantified water-leaving radiance spectra at the red, near-infrared (NIR), and shortwave infrared (SWIR) at the western Pacific using 3-yr observations from the Moderate Resolution Imaging Spectroradiometer on the satellite Aqua.
Abstract: Normalized water-leaving radiance spectra nLw(λ) at the red, near-infrared (NIR), and shortwave infrared (SWIR) are quantified and characterized in highly turbid waters of the western Pacific using 3 yr (2009–2011) observations from the Moderate Resolution Imaging Spectroradiometer on the satellite Aqua. nLw(645; red), nLw(859; NIR), and nLw(1240; SWIR) were higher in the coastal region and river estuaries, with SWIR nLw(1240) reaching up to ∼ 0.2 mW cm−2 µm−1 sr−1 in Hangzhou Bay during winter. The NIR ocean-reflectance spectral shape represented by the ratio of the normalized water-leaving reflectance ρwN(λ) at the two NIR bands ρwN(748) : ρwN(869) is highly dynamic and region-dependent. The NIR spectral feature associated with the sediment source from the Yellow River and Ancient Yellow River is noticeably different from that of the Yangtze River. There are non-negligible SWIR nLw(1240) contributions for waters with the NIR nLw(859) > ∼ 2.5 mW cm−2 µm−1 sr−1. Estimation of the NIR ocean reflectance with iterative approaches might only be accurate for turbid waters with nLw(859) < ∼ 1.5 mW cm−2 µm−1 sr−1. Thus, the SWIR atmospherics correction algorithm for satellite ocean-color data processing is indispensable to derive accurate nLw(λ) for highly turbid waters. Current existing satellite algorithms for chlorophyll a, diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), total suspended matter, and inherent optical properties (IOPs) using nLw(λ) at the red band for coastal waters are limited and can only be applied to turbid waters with nLw(859) < ∼ 1.5 mW cm−2 µm−1 sr−1. Thus, the NIR nLw(λ) measurements are required to characterize water properties for highly turbid waters. Based on the fact that pure water absorption is significantly larger than other absorption components in the NIR wavelengths, we show that it is feasible to analytically derive accurate IOP data for turbid waters with combined satellite-measured visible-NIR nLw(λ) spectra data.

Journal ArticleDOI
TL;DR: The Suomi National Polar-Orbiting Partnership (S-NPP) satellite was successfully launched on 28 October 2011 and carried five new-generation instruments, including the Visible Infrared Imaging Radiometer Suite (VIIRS) as discussed by the authors.
Abstract: The Suomi National Polar-Orbiting Partnership (S-NPP) satellite was successfully launched on 28 October 2011. It carries five new-generation instruments, including the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS is a whiskbroom radiometer that scans the surface of the earth using a rotating telescope assembly, a double-sided half-angle mirror, and 16 individual detectors. Substantial efforts are being made to accurately calibrate all detectors in orbit. As of this writing, VIIRS striping is reduced to levels below those seen in corresponding Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) bands and meets the program specifications and requirements. However, the level 2 SST products derived from level 1 sensor data records (SDRs) thermal emissive bands still show residual striping. These artifacts reduce the accuracy of SST measurements and adversely affect cloud masking and the output of downstream applications, such as thermal front detection. To improve the ...

Journal ArticleDOI
TL;DR: In this paper, the authors present the essential ingredients of a modeling system for projecting smoke consequences in a rapidly warming climate that is expected to change wildfire regimes significantly, and provide some general guidelines for making choices among potential components.
Abstract: Smoke from wildfires has adverse biological and social consequences, and various lines of evidence suggest that smoke from wildfires in the future may be more intense and widespread, demanding that methods be developed to address its effects on people, ecosystems, and the atmosphere. In this paper, we present the essential ingredients of a modeling system for projecting smoke consequences in a rapidly warming climate that is expected to change wildfire regimes significantly. We describe each component of the system, offer suggestions for the elements of a modeling agenda, and provide some general guidelines for making choices among potential components. We address a prospective audience of researchers whom we expect to be fluent already in building some or many of these components, so we neither prescribe nor advocate particular models or software. Instead, our intent is to highlight fruitful ways of thinking about the task as a whole and its components, while providing substantial, if not exhaustive, documentation from the primary literature as reference. This paper provides a guide to the complexities of smoke modeling under climate change, and a research agenda for developing a modeling system that is equal to the task while being feasible with current resources.

Journal ArticleDOI
TL;DR: In this paper, the Subgrid Snow Distribution (SSNOWD) parameterization was incorporated into the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) land surface model.
Abstract: Subgrid snow cover is one of the key parameters in global land models since snow cover has large impacts on the surface energy and moisture budgets, and hence the surface temperature. In this study, the Subgrid Snow Distribution (SSNOWD) snow cover parameterization was incorporated into the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) land surface model. SSNOWD assumes that the subgrid snow water equivalent (SWE) distribution follows a lognormal distribution function, and its parameters are physically derived from geoclimatic information. Two 29-yr global offline simulations, with and without SSNOWD, were performed while forced with the Japanese 25-yr Reanalysis (JRA-25) dataset combined with an observed precipitation dataset. The simulated spatial patterns of mean monthly snow cover fraction were compared with satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The snow cover fraction was improved by the inclusion of SSNOWD, particularly ...

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an algorithm for extending a limited set of vertically resolved cloud observations to form regional 3D cloud structure by identifying cloud-type-dependent correlations and using them to estimate cloud-base height and liquid/ice water content vertical structure.
Abstract: The launch of the NASA CloudSat in April 2006 enabled the first satellite-based global observation of vertically resolved cloud information. However, CloudSat’s nonscanning W-band (94 GHz) Cloud Profiling Radar (CPR) provides only a nadir cross section, or “curtain,” of the atmosphere along the satellite ground track, precluding a full three-dimensional (3D) characterization and thus limiting its utility for certain model verification and cloud-process studies. This paper details an algorithm for extending a limited set of vertically resolved cloud observations to form regional 3D cloud structure. Predicated on the assumption that clouds of the same type (e.g., cirrus, cumulus, and stratocumulus) often share geometric and microphysical properties as well, the algorithm identifies cloud-type-dependent correlations and uses them to estimate cloud-base height and liquid/ice water content vertical structure. These estimates, when combined with conventional retrievals of cloud-top height, result in a 3...

Journal ArticleDOI
TL;DR: In this article, a simple algorithm with Advanced Very High Resolution Radiometer (AVHRR) channels 1 and 2 albedo is developed to identify and discriminate the water pixels from land and cloud.
Abstract: The Aral Sea has been shrinking since the former Soviet Union constructed irrigation projects to divert water from its main rivers in the 1960s. The diminishing of the Aral Sea is “one of the worst environmental disasters in the world” (from United Nations Secretary-General Ban Ki-moon). In this study, 33 years of satellite observations from Advanced Very High Resolution Radiometer (AVHRR) and 21 years of satellite altimetry sea level data from TOPEX/Poseidon, Jason-1, and Jason-2 are used to quantify the long-term hydrological changes in the Aral Sea. A simple algorithm with AVHRR channels 1 and 2 albedo is developed to identify and discriminate the water pixels from land and cloud. Thus, monthly water coverage in the region can be reliably generated. The water coverage maps since 1981 show constant decline of the Aral Sea. The coverage dropped from ∼4.7–4.8 × 104 km2 in 1981 to about ¼ of this value in the recent years. In fact, drastic hydrological change was observed in the main Aral Sea during the 2000s. In the South Aral Sea, sea level shows a steady decrease from 35 m above sea level to <26 m since 1993. Total loss of water storage since 1993 is estimated to be ∼2.0 × 102 km3 for the South Aral Sea with a rate of ∼16−20 km3/yr before 2002, and a smaller value after 2002. In 1990, the North Aral Sea was observed to separate from the main Aral Sea. Water coverage, sea level, and total water storage were kept relatively stable for the period between 1993 and 2013 in the North Aral Sea. A water level increase and coverage expansion occurred during the 2005−2006 period when a dam was built in 2005 between the North Aral Sea and the South-East Aral Sea.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the contribution of subsurface melt to the mass balance of (and runoff from) Dry Valley glaciers by including a drainage process in the model and applying the model to three glacier sites using 13 years of hourly meteorological data.
Abstract: The McMurdo Dry Valleys, southern Victoria Land, East Antarctica, are a polar desert, and melt from glacial ice is the primary source of water to streams, lakes and associated ecosystems Previous work found that to adequately model glacier ablation and subsurface ice temperatures with a surface energy-balance model required including the transmission of solar radiation into the ice Here we investigate the contribution of subsurface melt to the mass balance of (and runoff from) Dry Valley glaciers by including a drainage process in the model and applying the model to three glacier sites using 13 years of hourly meteorological data Model results for the smooth glacier surfaces common to many glaciers in the Dry Valleys showed that sublimation was typically the largest component of surface lowering, with rare episodes of surface melting, consistent with anecdotal field observations Results also showed extensive internal melting 5–15 cm below the ice surface, the drainage of which accounted for ~50% of summer ablation This is consistent with field observations of subsurface streams and formation of a weathering crust We identify an annual cycle of weathering crust formation in summer and its removal during the 10 months of winter sublimation

Journal ArticleDOI
TL;DR: This study quantifies how forecast errors can influence the results of a power outage model, highlighting the importance of considering uncertainty when using hurricane forecasts in decision-support applications.
Abstract: A variety of decision-support systems, such as those employed by energy and utility companies, use the National Hurricane Center (NHC) forecasts of track and intensity to inform operational decision making as a hurricane approaches. Track and intensity forecast errors, especially just prior to landfall, can substantially impact the accuracy of these decision-support systems. This study quantifies how forecast errors can influence the results of a power outage model, highlighting the importance of considering uncertainty when using hurricane forecasts in decision-support applications. An ensemble of 1,000 forecast realizations is generated using the Monte Carlo wind speed probability model for Hurricanes Dennis, Ivan, and Katrina. The power outage model was run for each forecast realization to predict the spatial distribution of power outages. Based on observed power outage data from a Gulf Coast utility company, the authors found that in all three cases the ensemble average was a better predictor of power...

Journal ArticleDOI
TL;DR: In this paper, the authors present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS).
Abstract: The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.

Journal ArticleDOI
TL;DR: In this article, the authors compared simulated cloud fields from the 4-km National Severe Storms Laboratory (NSSL) WRF-ARW with observed GOES-13 imagery.
Abstract: Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) single-moment 6-class (WSM6) microphysics scheme in the Advanced Research WRF (WRF-ARW) produces less upper-level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite-13 (GOES-13) imagery at 10.7 μm of simulated cloud fields from the 4-km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper-level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed anvils. Such images illustrate the lack of anvil cloud associated with convection produced by the 4-km NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvi...

Journal ArticleDOI
TL;DR: The meteorological conditions associated with the rapid intensification and spread of the catastrophic Waldo Canyon fire on 26 June 2012 are studied in this article, which caused two fatalities, destroyed 347 homes in Colorado Springs, and resulted in insurance losses of nearly $0.5 billion (U.S. dollars), making it the most economically destructive fire in Colorado history.
Abstract: The meteorological conditions associated with the rapid intensification and spread of the catastrophic Waldo Canyon fire on 26 June 2012 are studied. The fire caused two fatalities, destroyed 347 homes in Colorado Springs, and resulted in insurance losses of nearly $0.5 billion (U.S. dollars), making it the most economically destructive fire in Colorado’s history. While the fire was first discovered on 23 June, the paper focuses on 26 June, when it grew explosively and rapidly advanced eastward into a heavily populated area on the west side of Colorado Springs. Near-record hot and dry conditions prevailed over the Intermountain West prior to the fire, along with a persistent upper-level ridge. On 26 June, a narrow tongue of moist air aloft originating over the Southwest shifted from Utah into Colorado. Dry conditions at low levels and moisture aloft set the stage for strong microburst-producing thunderstorms to develop over Colorado. Convective cells first formed at midday over the San Juan Mounta...

Journal ArticleDOI
TL;DR: In this article, surface mass balance (SMB) magnitudes and individual and regional mean conditions and trends (1979-2009) were simulated for all GIC having areas greater or equal to 0.5 km2 in the Northern Hemisphere north of 25°N latitude (excluding the Greenland Ice Sheet).
Abstract: Mass changes and mass contribution to sea level rise from glaciers and ice caps (GIC) are key components of the earth’s changing sea level. GIC surface mass balance (SMB) magnitudes and individual and regional mean conditions and trends (1979–2009) were simulated for all GIC having areas greater or equal to 0.5 km2 in the Northern Hemisphere north of 25°N latitude (excluding the Greenland Ice Sheet). Recent datasets, including the Randolph Glacier Inventory (RGI; v. 2.0), the NOAA Global Land One-km Base Elevation Project (GLOBE), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) products, together with recent SnowModel developments, allowed relatively high-resolution (1-km horizontal grid; 3-h time step) simulations of GIC surface air temperature, precipitation, sublimation, evaporation, surface runoff, and SMB. Simulated SMB outputs were calibrated against 1422 direct glaciological annual SMB observations of 78 GIC. The overall GIC mean annual and mean summer a...

Journal ArticleDOI
TL;DR: In this paper, the authors conducted a survey to learn more about the diversity of individual emergency managers and of the communities they serve, including a general overview of the nature of that community, along with characteristics that might influence collaboration.
Abstract: R ESPONSE TO WEATHER WARNINGS. The National Weather Service (NWS) is responsible for issuing public warnings for all hazardous weather events across the United States. Advances in technology and basic scientific research over the years have allowed for significant improvements in this assignment. But while the NWS continues to focus much of its strategic planning toward improved warnings, most of those associated with the process are aware that there are a number of steps beyond increased accuracy to make their warnings effective. These include assuring that the target audience hears their message, understands it, believes it, and responds to it properly. One useful means of addressing these issues involves working directly with community response organizations, whose job it is to direct and allocate emergency services during catastrophic events. Often, the primary responsibility for identifying risks and managing vulnerabilities within a community is entrusted to a local emergency manager. With an emergency management system in place, disaster response can be more coordinated, flexible, and professional. However, one crucial factor in effectively managing emergencies is collaboration with organizational partners, and breakdowns in collaboration can adversely impact outcomes. In recent weather-related incidents, communications between the NWS and emergency managers have become confused. For example, in the case of the 2008 Windsor, Colorado, tornado, NWS forecasters tried to convey the urgency of a developing situation, while emergency managers awaited confirmation that a damaging event was actually underway. In that situation, it appears that emergency managers didn’t entirely understand how strongly forecasters felt about the potential threat, and NWS forecasters didn’t understand why emergency managers were not implementing emergency response immediately. The premise of the present study is that NWS forecasters can benefit from knowing more about their emergency management counterparts, including a general overview of the nature of that community, along with characteristics that might influence collaboration. To this end, a nationwide survey was conducted to learn more about the diversity of individual emergency managers and of the communities they serve.

Journal ArticleDOI
TL;DR: In this paper, a geometric version of the tangent linear model (TLM) is combined with the additive TLM for the mixed distribution-based cost function for 3D and 4DVAR with Lognormal and mixed lognormal-Gaussian-distributed background and observation errors.
Abstract: An advance that made Gaussian-based three- and four-dimensional variational data assimilation (3D- and 4DVAR, respectively) operationally viable for numerical weather prediction was the introduction of the incremental formulation. This reduces the computational costs of the variational methods by searching for a small increment to a background state whose evolution is approximately linear. In this paper, incremental formulations for 3D- and 4DVAR with lognormal and mixed lognormal–Gaussian-distributed background and observation errors are presented. As the lognormal distribution has geometric properties, a geometric version for the tangent linear model (TLM) is proven that enables the linearization of the observational component of the cost functions with respect to a geometric increment. This is combined with the additive TLM for the mixed distribution–based cost function. Results using the mixed incremental scheme with the Lorenz’63 model are presented for different observational error variances...

Journal ArticleDOI
TL;DR: The Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) was conducted in spring-summer 2011, with the aim of better understanding sources of reactive nitrogen influencing the region, spatial and temporal variability of reactive NO in the atmosphere, and current levels of nitrogen deposition.

Journal ArticleDOI
TL;DR: In this article, a physical basis for the detection of liquid-top mixed-phase clouds from passive satellite radiometer observations is described, which makes use of reflected sunlight in narrow bands at 16 and 225 µm to optically probe below liquid-topped clouds and determine phase Detection is predicated on differential absorption properties between liquid and ice particles.
Abstract: Meteorological clouds often exist in the liquid phase at temperatures below 0°C Traditionally, satellite-derived information on cloud phase comes from narrow bands in the shortwave and thermal infrared, with sensitivity biased strongly toward cloud top In situ observations suggest an abundance of clouds having supercooled liquid water at their tops but a predominantly ice phase residing below Satellites may report these clouds simply as supercooled liquid, with no further information regarding the presence of a subcloud top ice phase Here we describe a physical basis for the detection of liquid-top mixed-phase clouds from passive satellite radiometer observations The algorithm makes use of reflected sunlight in narrow bands at 16 and 225 µm to optically probe below liquid-topped clouds and determine phase Detection is predicated on differential absorption properties between liquid and ice particles, accounting for varying Sun/sensor geometry and cloud optical properties When tested on numerical weather prediction model simulated cloud fields, the algorithm provided threat scores in the 06–08 range and false alarm rates in the 01–02 range A case study based on surface and satellite observations of liquid-top mixed-phase clouds in northern Alaska was also examined Preliminary results indicate promising potential for distinction between supercooled liquid-top phase clouds with and without an underlying mixed-phase component

Journal ArticleDOI
TL;DR: In this paper, monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period.
Abstract: Monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period. Aggregated for sites across the continental United States, the annual mean and one standard error in urban excess (defined as the ratio of urban to nearby rural concentrations) was highest for elemental carbon (3.3 ± 0.2), followed by ammonium nitrate (2.5 ± 0.2), particulate organic matter (1.78 ± 0.08), and ammonium sulfate (1.23 ± 0.03). The seasonal variability in urban excess was significant for carbonaceous aerosols and ammonium nitrate in the West, in contrast to the low seasonal variability in the urban influence of ammonium sulfate. Generally for all species, higher excess values in the West were associated with localized urban sources while in the East excess was more regional in extent. In addition, higher excess values in the western United States in winter were likely influenced not only by differences in sources but also by combined meteorological and topographic effects. This work has implications for understanding the spatial heterogeneity of major aerosol species near the interface of urban and rural regions and therefore for designing appropriate air quality management strategies. In addition, the spatial patterns in speciated mass concentrations provide constraints for regional and global models.