scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Patent
10 Oct 2007
TL;DR: In this paper, a method for spacing heater wells for an in situ conversion process is provided, which includes the steps of determining a direction along which thermal energy will travel most efficiently through a subsurface formation, and completing a plurality of heater wells.
Abstract: A method for spacing heater wells for an in situ conversion process is provided The method includes the steps of determining a direction along which thermal energy will travel most efficiently through a subsurface formation, and completing a plurality of heater wells in the subsurface formation, with the heater wells being spaced farther apart in the determined direction than in a direction transverse to the determined direction In one aspect, the step of determining a direction along which thermal energy will travel most efficiently is performed based upon a review of geological data pertaining to the subsurface formation The geological data may comprise the direction of least horizontal pnncipal stress in the subsurface formation Alternatively, the geological data may comprise the direction of bedding in the subsurface formation, the tilt of the subsurface formation relative to the surface topography, the organic carbon content of the kerogen, the initial formation permeability

105 citations

Journal ArticleDOI
TL;DR: In this article, the interaction between hydrophobically modified polymers and surfactant micelles is investigated and two patterns of association are observed: strong cooperative interaction and non-cooperative interaction.

105 citations

Journal ArticleDOI
09 Apr 2002-Langmuir
TL;DR: In this paper, the interaction between hydrophobically modified polymers (hm-polymers) and surfactants was investigated by steady-state fluorescence as well as rheological experiments.
Abstract: Interactions between hydrophobically modified polymers (hm-polymers) and surfactants were investigated by steady-state fluorescence as well as rheological experiments. Hydrophobically modified hydroxyethylcellulose (hmHEC) with C16 hydrophobe grafts of 0.9% mole along with tetradecyltrimethylammonium bromide and cetyltrimethylammonium bromide were studied. The presence of C16HEC induced the aggregation of surfactant micelles in aqueous solution at concentrations about one-half times lower than the critical micelle concentration. As surfactant is added, the viscosity of hm-polymer solution first increases due to the bridging of hydrophobe clusters by surfactant micelles to form mixed micelles and later decreases due to the masking of hydrophobes individually by excess micelles. Fluorescence quenching experiments showed that the number of hydrophobes (NH) in a mixed micelle decreases steadily with increasing surfactant concentration due to hydrophobe dilution by the surfactant. NH declines from greater than...

105 citations

Patent
26 Jan 2001
TL;DR: In this paper, formulated lubricant oils derived from a highly paraffinic basestock are described. But the formulation of the oils is restricted to a single paraffin base stock.
Abstract: The present invention relates to formulated lubricant oils derived from a highly paraffinic basestock. The formulated lubricant oils of the present invention comprise a wax isomerate paraffinic hydrocarbon basestock component in which the extent of branching, as measured by the percentage of methyl hydrogens (BI), and the proximity of branching, as measured by the percentage of recurring methylene carbons which are four or more carbons removed from an end group or branch (CH2 > 4), are such that: (a) BI - 0.5(CH2 > 4)15; and (b) BI + 0.85(CH2 <<45; as measured over the hydrocarbon basestock as a whole. Preferably, the wax isomerate basestocks to be used in the lubricating oils of the present invention have a biodegradability value of at least 50 % under OECD 301 B test. In addition, these basestock components have pour points of about -25 °C or lower. They are also characterized by unexpectedly good low-temperature and high-temperature viscosities, with CCS viscosity at -15 °C of not more than about 3 500 cP, and with a kinematic viscosity at 100 °C of about 5 cSt or greater. Desirable multigraded oils obtained using these basestocks may include 0W-, 5W-, 10W-, and 15W-XX grades (XX=20-60).

105 citations

Patent
03 Jun 1997
TL;DR: A process for converting Fischer-Tropsch wax streams to lubricants by reacting a stream with a dewaxing catalyst in a reaction zone where the stream flows countercurrent to upflowing hydrogen-containing treat gas is described in this paper.
Abstract: A process for converting Fischer-Tropsch wax streams to lubricants by reacting said stream with a dewaxing catalyst in a reaction zone where the stream flows countercurrent to upflowing hydrogen-containing treat gas.

104 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438