scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a Monte Carlo procedure is applied to the study of grain growth in two dimensions, where the initial distribution of orientations is chosen at random and the system evolves so as to reduce the number of nearest neighbor pairs of unlike crystallographic orientation.

918 citations

Journal ArticleDOI
TL;DR: In this article, the pore volume detected by field-emission scanning electron microscopy (FE-SEM) is associated with organic matter (OM) instead of mineral matrix.
Abstract: The Marcellus Formation of Pennsylvania represents an outstanding example of an organic matter (OM)–hosted pore system; most pores detectable by field-emission scanning electron microscopy (FE-SEM) are associated with OM instead of mineral matrix. In the two wells studied here, total organic carbon (TOC) content is a stronger control on OM-hosted porosity than is thermal maturity. The two study wells span a maturity from late wet gas (vitrinite reflectance [Ro], 1.0%) to dry gas (Ro, 2.1%). Samples with a TOC less than 5.5 wt. % display a positive correlation between TOC and porosity, but samples with a TOC greater than 5.5 wt. % display little or no increase in porosity with a further increasing TOC. In a subset of samples (14) across a range of TOC (2.3–13.6 wt. %), the pore volume detectable by FE-SEM is a small fraction of total porosity, ranging from 2 to 32% of the helium porosity. Importantly, the FE-SEM–visible porosity in OM decreases significantly with increasing TOC, diminishing from 30% of OM volume to less than 1% of OM volume across the range of TOC. The morphology and size of OM-hosted pores also vary systematically with TOC. The interpretation of this anticorrelation between OM content and SEM-visible pores remains uncertain. Samples with the lowest OM porosity (higher TOC) may represent gas expulsion (pore collapse) that was more complete as a consequence of greater OM connectivity and framework compaction, whereas samples with higher OM porosity (lower TOC) correspond to rigid mineral frameworks that inhibited compactional expulsion of methane-filled bubbles. Alternatively, higher TOC samples may contain OM (low initial hydrogen index, relatively unreactive) that is less prone to development of FE-SEM–detectable pores. In this interpretation, OM type, controlled by sequence-stratigraphic position, is a factor in determining pore-size distribution.

913 citations

Journal ArticleDOI
TL;DR: Catuneanu et al. as discussed by the authors used a neutral approach that focused on model-independent, fundamental concepts, because these are the ones common to various approaches and this search for common ground is what they meant by "standardization", not the imposition of a strict, inflexible set of rules for the placement of sequence-stratigraphicsurfaces.

872 citations

Journal ArticleDOI
TL;DR: A systematic, large-scale simulation study of granular media in two and three dimensions, investigating the rheology of cohesionless granular particles in inclined plane geometries, finds that a steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction and inelastic collisions is found.
Abstract: We have performed a systematic, large-scale simulation study of granular media in two and three dimensions, investigating the rheology of cohesionless granular particles in inclined plane geometries, i.e., chute flows. We find that over a wide range of parameter space of interaction coefficients and inclination angles, a steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction and inelastic collisions. In this regime, the bulk packing fraction (away from the top free surface and the bottom plate boundary) remains constant as a function of depth z, of the pile. The velocity profile in the direction of flow vx(z) scales with height of the pile H, according to vx(z) proportional to H(alpha), with alpha=1.52+/-0.05. However, the behavior of the normal stresses indicates that existing simple theories of granular flow do not capture all of the features evidenced in the simulations.

853 citations

01 Jan 2002
TL;DR: Members Ahti Anttila, Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Liisankatu 21 B, 00170 Helsinki, Finland Ramesh V. Bhat, National Institute of Nutrition, Indian Council of Medical Research, Jamai-Osmania PO, Hyderabad-500 007 AP, India.
Abstract: Members Ahti Anttila, Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Liisankatu 21 B, 00170 Helsinki, Finland Ramesh V. Bhat, National Institute of Nutrition, Indian Council of Medical Research, Jamai-Osmania PO, Hyderabad-500 007 AP, India James A. Bond, Chemico-Biological Interactions, Toxcon, 5505 Frenchmans Creek, Durham, NC 27713, USA Susan J. Borghoff, CIIT Centers for Health Research, 6 Davis Drive, Box 12137, Research Triangle Park, NC 27709-2127, USA F. Xavier Bosch, Epidemiology Unit and Cancer Registry, Catalan Institute of Oncology, Av. Gran via s/n, Km. 2.7, 08907 L’Hospitalet del Llobregat, Spain Gary P. Carlson, School of Health Sciences, 1338 Civil Engineering Building, Purdue University, West Lafayette, IN 47907-1338, USA Marcel Castegnaro, Les Collanges, 07240 Saint-Jean-Chambre, France George Cruzan, ToxWorks, 1153 Roadstown Road, Bridgeton, NJ 08302-6640, USA Wentzel C.A. Gelderblom, Programme on Mycotoxins and Experimental Carcinogenesis, Medical Research Council (MRC), PO Box 19070, Tygerberg, South Africa 7505 Ulla Hass, Institute of Food Safety and Toxicology, Morkhoj Bygade 19, 2860 Soborg, Denmark Sara H. Henry, 5100 Paint Branch Parkway, College Park, MD 20740-3835, USA Ronald A. Herbert, Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, PO Box 12233, Mail Drop B3-08, Research Triangle Park, NC 27709-2233, USA Marc Jackson, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA IARC WORKING GROUP ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS: SOME TRADITIONAL HERBAL MEDICINES, SOME MYCOTOXINS, NAPHTHALENE AND STYRENE

836 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438