scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
Gabor Kiss1
TL;DR: Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art; thus, continued effort in the field is warranted.
Abstract: PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter is typically more available and less expensive (for industrial applications CO is most often separated from syngas). (4) The acid component of the hydroesterification catalyst makes the process corrosive. It would be desirable to develop new hydroesterification catalysts that do not require acid stabilizer/activity booster. Clearly, any new hydroesterification technology will directly compete with the hydroformylation route. This is especially true for olefin feeds, since both processes add one CO to the olefin, yielding oxygenates that can be converted into identical products. For some niche applications, like the production of MMA from propyne, hydroesterification seems to have an advantage as compared to hydroformylation due to the high activity and selectivity of the Pd(OAc)2/(2-pyridyl)diphenylphosphine catalyst. Since hydroesterification is an emerging technology, it is reasonable to assume that the potential for improvement is greater than in the mature hydroformylation. It is therefore possible that hydroesterification will become competitive in the future; thus, continued effort in the field is warranted.

436 citations

Patent
07 Sep 1989
TL;DR: In this paper, a chiral silicon-bridged metallocene catalyst was proposed to polymerize α-olefins to high isotacity with a minimum of inversions at high rates of catalyst activity.
Abstract: Silicon-bridged transition metal compounds and their use as α-olefin polymerization catalysts are disclosed. A chiral silicon-bridged metallocene catalyst polymerizes α-olefins to high isotacity with a minimum of inversions at high rates of catalyst activity. The catalyst is easily made in high yields and readily separated from atactic meso forms.

427 citations

Journal ArticleDOI
TL;DR: In this article, the development of polymers as 1D photonic crystals and the activities in self-assembled block copolymers as a promising platform material for new photonic crystal.
Abstract: In this report, we highlight the development of polymers as 1D photonic crystals and subsequently place special emphasis on the activities in self-assembled block copolymers as a promising platform material for new photonic crystals. We review recent progress, including the use of plasticizer and homopolymer blends of diblock copolymers to increase periodicity and the role of self-assembly in producing 2D and 3D photonic crystals. The employment of inorganic nanoparticles to increase the dielectric contrast and the application of a biasing field during self-assembly to control the long-range domain order and orientation are examined, as well as in-situ tunable materials via a mechanochromic materials system. Finally, the inherent optical anisotropy of extruded polymer films and side-chain liquid-crystalline polymers is shown to provide greater degrees of freedom for further novel optical designs.

421 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the cost of FWI for fixed-spread data can be significantly reduced by applying it to data formed by encoding and summing data from individual sources.
Abstract: Full-wavefield seismic inversion (FWI) estimates a subsurface elastic model by iteratively minimizing the difference between observed and simulated data. This process is extremely computationally intensive, with a cost comparable to at least hundreds of prestack reverse-time depth migrations. When FWI is applied using explicit time-domain or frequency-domain iterative-solver-based methods, the seismic simulations are performed for each seismic-source configuration individually. Therefore, the cost of FWI is proportional to the number of sources. We have found that the cost of FWI for fixed-spread data can be significantly reduced by applying it to data formed by encoding and summing data from individual sources. The encoding step forms a single gather from many input source gathers. This gather represents data that would have been acquired from a spatially distributed set of sources operating simultaneously with different source signatures. The computational cost of FWI using encoded simultaneous-source gathers is reduced by a factor roughly equal to the number of sources. Further, this efficiency is gained without significantly reducing the accuracy of the final inverted model. The efficiency gain depends on subsurface complexity and seismic-acquisition parameters. There is potential for even larger improvements of processing speed.

420 citations

Patent
Elvin Lynn Hoel1
09 Jun 1989
TL;DR: In this article, a process for preparing high molecular weight ethylene-α-olefin elastomers by liquid phase polymerization of the requisite monomers in the presence of a metallocene/alumoxane catalyst system is described.
Abstract: Disclosed is a process for preparing high molecular weight ethylene-α-olefin elastomers, preferably an ethylene-propylene elastomer, by liquid phase polymerization of the requisite monomers in the presence of a metallocene/alumoxane catalyst system. Preferably, the process is carried out as a slurry polymerization utilizing the metallocene/alumoxane catalyst in supported form on a silica gel support with the α-olefin monomer maintained in liquid state and used in excess to serve as a polymerization diluent. The metallocene component of the catalyst by which the process is practiced is of the formula: ##STR1## wherein M is zirconium, titanium or hafnium; each R 1 independently is a C 1 -C 20 linear, branched or cyclic alkyl group or a C 2 -C 4 cyclic alkylene group which forms a fused ring system group; R 2 is a C 1 -C 6 linear, branched or cyclic alkylene, a Si 1 -Si 2 alkyl substituted silanylene group or an alkyl substituted silaalkylene group; each X independently is an alkyl, aryl, halide, hydride or oxygen bridge of a zirconocene dimer; "y" is a number 2, 3 or 4, and "b" is a number 0 or 1. M is preferably zirconium. Most preferably, the supported zirconocene/alumoxane catalyst is prepolymerized with ethylene or another olefin to provide spherical, free-flowing catalyst particles which give free-flowing particulate elastomer product from the slurry polymerization.

417 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438