scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution, and use a weighted-average method to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations.
Abstract: Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300–600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230–786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 7C, but the range spans about 30C (121–151C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230–774 mg HC/g TOC). At a heating rate of 1C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23C (127–150C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted-average method that combines kinetics for samples from different locations in the source rock unit by giving the activation energy distribution for each sample a weight proportional to its Rock-Eval pyrolysis S2 yield (hydrocarbons generated by pyrolytic degradation of organic matter).

108 citations

Journal ArticleDOI
01 Apr 2019
TL;DR: In this article, the authors provide a framework for understanding how to convert ethanol into distillate-range molecules and the key research problems to be addressed, including thermodynamics, kinetics, process integration and catalyst development.
Abstract: Ethanol is presently the most common liquid fuel derived from biomass. One way of meeting the growing demand for heavier middle-distillate fuels — diesel and jet fuels comprising hydrocarbons of typically 8–22 carbon atoms — is to derive these from ethanol. This Review describes the chemistries and processes involved in the conversion of ethanol into diesel and jet fuel drop-in replacements and blendstocks. This conversion of ethanol relies on reactions including dehydration (to olefins), dehydrogenation (to aldehydes), hydrogenation (of C=C and C=O bonds), acid-catalysed olefin oligomerization, metal-catalysed olefin oligomerization, aldolization and ketonization. We discuss the thermodynamics, kinetics, process integration and catalyst development of different approaches. Some routes, particularly those based on olefin oligomerization, have been realized on the pilot scale. Other routes are currently in laboratory stages. This Review provides a framework for understanding how to convert ethanol into distillate-range molecules and the key research problems to be addressed. Ethanol has emerged as a potential alternative feedstock for the synthesis of middle-distillate transportation fuels. This Review describes the chemistry of ethanol-to-distillate processes and challenges associated with improving current technologies and implementing new ones.

108 citations

Journal ArticleDOI
01 Jan 2010
TL;DR: Using available regional seismic lines correlated with borehole data, onshore geology in areas with no exploration drilling, and recent Arcticwide magnetic, bathymetry and gravity grids, this paper provided more confident characterization of the regional structural elements of the Russian Arctic shelf, and constrain the timing of basin formation, structural styles, lithostratigraphy and possible hydrocarbon systems and petroleum play elements in frontier areas.
Abstract: The Eastern Barents, Kara, Laptev, East Siberian seas and the western Chukchi Sea occupy a large part of the Eurasian Arctic epicontinental shelf in the Russian Arctic. Recent studies have shown that this huge region consists of over 40 sedimentary basins of variable age and genesis which are thought to bear significant undiscovered hydrocarbon resources. Important tectonic events controlling the structure and petroleum geology of the basins are the Caledonian collision and orogeny followed by Late Devonian to Early Carboniferous rifting, Late Palaeozoic Baltica–Siberia collision and Uralian orogeny, Triassic and Early Jurassic rifting, Late Jurassic to Early Cretaceous Canada Basin opening accompanied by closure of the South Anyui Ocean, the Late Mesozoic Verkhoyansk–Brookian orogeny and Cenozoic opening of the Eurasia Oceanic Basin. The majority of the sedimentary basins were formed and developed in a rift and post-rift setting and later modified through a series of structural inversions. Using available regional seismic lines correlated with borehole data, onshore geology in areas with no exploration drilling, and recent Arctic-wide magnetic, bathymetry and gravity grids, we provide more confident characterization of the regional structural elements of the Russian Arctic shelf, and constrain the timing of basin formation, structural styles, lithostratigraphy and possible hydrocarbon systems and petroleum play elements in frontier areas.

107 citations

Patent
18 May 2000
TL;DR: In this paper, a natural gas liquefaction system and process where excess refrigeration available in a typical NGL system is used to cool the inlet air to gas turbines in the system to improve the overall efficiency of the system.
Abstract: A natural gas liquefaction system and process wherein excess refrigeration available in a typical natural gas liquefaction system is used to cool the inlet air to gas turbines in the system to thereby improve the overall efficiency of the system. A cooler is positioned in front of the air inlet of each gas turbine; and coolant (e.g. water) is flowed through each of the coolers to cool the ambient air as it flows into the gas turbines. The water, in turn, is cooled with propane taken from a refrigerant circuit in the system which, in turn, is used to initially cool the natural gas which is to be liquefied.

107 citations

Journal ArticleDOI
TL;DR: In this article, the interaction of rhenium oxide with an alumina support was examined over a wide range of conditions (rhenium oxides loading, calcination temperature and environment) using laser Raman spectroscopy (LRS) and X-ray absorption near-edge spectrograph (XANES).

107 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438