scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
John Killough1
TL;DR: A history-dependent model for saturation functions, combined with a three-dimensional, three-phase, semi-implicit reservoir simulator, has been developed in this paper for water-coning simulations with variable rates.
Abstract: A history-dependent model for saturation functions, combined with a three-dimensional, three-phase, semi-implicit reservoir simulator, has been developed. In water-coning simulations with variable rates, for waterflooding in the presence of free gas saturations, and for gas-cap shrinkage, use of hysteresis in saturation functions shows results significantly different from those obtained by conventional methods. To some extent, the model is based upon remembering the saturation history of the reservoir. In doing this, smooth transitions of both relative permeabilities and capillary pressures from drainage-to-imbibition or imbibition-to-drainage states are allowed. In addition, the effect of trapped gas or oil saturations on relative permeabilities and capillary pressures is accounted for. Tests of the model indicate that simulation with hysteresis is a stable procedure requiring little more computation time and storage than normal simulations. In addition, results of these tests agree qualitatively with experimental and field results.

340 citations

Patent
25 Oct 1976
TL;DR: In this article, coal liquids and gases are recovered from a coal seam by drilling one or more boreholes from the earth's surface into the lower part of the coal seam, burning out the coal over a limited area near the bottom of the seam, collapsing the overlying coal to form a rubblized zone extending vertically to a point near the upper boundary of the seams, driving a flame front vertically through the rubblised zone to liberate hydrocarbon liquids and produce gases.
Abstract: Coal liquids and gases are recovered from a thick underground coal seam by drilling one or more boreholes from the earth's surface into the lower part of the seam, burning out the coal over a limited area near the bottom of the seam, collapsing the overlying coal to form a rubblized zone extending vertically to a point near the upper boundary of the seam, driving a flame front vertically through the rubblized zone to liberate hydrocarbon liquids and produce gases, and recovering the liquids and gases from the rubblized zone.

339 citations

Journal ArticleDOI
TL;DR: Molecular dynamics simulations of fluid films confined between two solid walls show that the viscosity exhibits the same power-law scaling with shear rate that was observed in recent experiments.
Abstract: We describe molecular dynamics simulations of fluid films confined between two solid walls. The films consist of spherical molecules, or flexible linear chains with up to twenty monomers. When the wall separation is only a few molecular diameters, crystalline or glassy order is induced across the film. The onset of the glassy phase is characterized by rapidly increasing relaxation times. These manifest themselves through changes in the diffusion constant and in the response to shear. The viscosity exhibits the same power-law scaling with shear rate that was observed in recent experiments. Our study suggests that this response is a universal property of lubricants near a glass transition.

338 citations

Journal ArticleDOI
TL;DR: For a specific hydrocarbon system (similar source type and level of maturity), general trends exist for oil-quality parameters vs. present-day reservoir temperatures of <80°C as mentioned in this paper.
Abstract: Biodegradation of oils in nature is important in reservoirs cooler than approximately 80°C. Oils from shallower, cooler reservoirs tend to be progressively more biodegraded than those in deeper, hotter reservoirs. Increasing levels of biodegradation generally cause a decline in oil quality, diminishing the producibility and value of the oil as API gravity and distillate yields decrease; in addition, viscosity, sulfur, asphaltene, metals, vacuum residua, and total acid numbers increase. For a specific hydrocarbon system (similar source type and level of maturity), general trends exist for oil-quality parameters vs. present-day reservoir temperatures of <80°C. However, other controls on biodegradation may also have significant effects, making predrill prediction of oil quality difficult in some areas. It has long been observed that fresh, oxygenated waters in contact with reservoir oil can cause extensive aerobic biodegradation. More recently, it has been recognized that anaerobic sulfatereducing and fermenting bacteria also can degrade petroleum. Highly saline formation waters may inhibit bacterial degradation and effectively shield oils from oil-quality deterioration. The timing of hydrocarbon charge(s) and the post-charge temperature history of the reservoir can have major effects on oil quality. Reservoirs undergoing current charging with hydrocarbons may overwhelm the ability of bacteria to degrade the oil, resulting in better-than-anticipated oil quality. Fresh charge to reservoirs containing previously degraded oil will upgrade oil quality. Calibrated methods of oil-quality risking, based on a detailed evaluation of reservoir charge and temperature history and local controls on biodegradation, need to be developed on a play and prospect basis.

337 citations

Journal ArticleDOI
TL;DR: In this paper, a transport-enhanced α-olefin readsorption leads to an increase in chain growth probability and in paraffin content with increasing pore and bed residence time.

337 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438