scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Patent
23 Feb 2007
TL;DR: In this article, a method, system and apparatus associated with the production of hydrocarbons are described, which includes a wellbore that accesses a subsurface reservoir, a production tubing string disposed within the well-bore; and one or more sand control devices coupled to the production tube string and disposed within a well bore.
Abstract: A method, system and apparatus associated with the production of hydrocarbons are described. The system includes a wellbore that accesses a subsurface reservoir; a production tubing string disposed within the wellbore; and one or more sand control devices coupled to the production tubing string and disposed within the wellbore. At least one of the sand control devices includes a first tubular member having a permeable section and a non permeable section; a second tubular member disposed within the first tubular member. The second tubular member has a plurality of openings and an inflow control device that each provide a flow path to the interior of the second tubular member. Also, the at least one of the sand control devices includes a sealing mechanism disposed between the first tubular member and the second tubular member. The sealing mechanism is configured to provide a pressure loss during gravel packing operations that is less than the pressure loss during at least some of the production operations.

102 citations

Patent
24 Jan 2000
TL;DR: In this paper, a process and a catalyst for the hydroalkylation of an aromatic hydrocarbon, particularly benzene, were described, where the catalyst comprises a first metal having hydrogenation activity and a crystalline inorganic oxide material having a X-ray diffraction pattern.
Abstract: There is described a process and a catalyst for the hydroalkylation of an aromatic hydrocarbon, particularly benzene, wherein the catalyst comprises a first metal having hydrogenation activity and a crystalline inorganic oxide material having a X-ray diffraction pattern including the following d-spacing maxima 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07.

102 citations

Journal ArticleDOI
TL;DR: The liquid membrane process can effectively separate and concentrate uranium from wet process phosphoric acid and is economically superior to solvent extraction systems as discussed by the authors, and it can be used for uranium recovery.
Abstract: The liquid membrane process can effectively separate and concentrate uranium from wet process phosphoric acid and is economically superior to solvent extraction systems. The paper describes the process, compares it to other extraction schemes, and shows how it can be used for uranium recovery. A mathematical model useful for design purposes is presented and the effect of important variables is discussed.

102 citations

Journal ArticleDOI
TL;DR: In this article, a 2D finite-difference, frequency-domain method was developed for modeling viscoacoustic seismic waves in transversely isotropic media with a tilted symmetry axis.
Abstract: A 2D finite-difference, frequency-domain method was developed for modeling viscoacoustic seismic waves in transversely isotropic media with a tilted symmetry axis. The medium is parameterized by the P-wave velocity on the symmetry axis, the density, the attenuation factor, Thomsen’s anisotropic parameters δ and ϵ , and the tilt angle. The finite-difference discretization relies on a parsimonious mixed-grid approach that designs accurate yet spatially compact stencils. The system of linear equations resulting from discretizing the time-harmonic wave equation is solved with a parallel direct solver that computes monochromatic wavefields efficiently for many sources. Dispersion analysis shows that four grid points per P-wavelength provide sufficiently accurate solutions in homogeneous media. The absorbing boundary conditions are perfectly matched layers (PMLs). The kinematic and dynamic accuracy of the method wasassessed with several synthetic examples which illustrate the propagation of S-waves excited at t...

102 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that secondary building units serve as competent platforms for accessing terminal high-valent metal-oxo species that consequently engage in catalytic oxygen atom transfer chemistry owing to the relatively weak ligand fields provided by the SBU.
Abstract: Partial substitution of ZnII by MnII in Zn4O(terephthalate)3 (MOF-5) leads to a distorted all-oxygen ligand field supporting a single MnII site, whose structure was confirmed by Mn K-edge X-ray absorption spectroscopy. The MnII ion at the MOF-5 node engages in redox chemistry with a variety of oxidants. With tBuSO2PhIO, it produces a putative MnIV-oxo intermediate, which upon further reaction with adventitious hydrogen is trapped as a MnIII–OH species. Most intriguingly, the intermediacy of the high-spin MnIV–oxo species is likely responsible for catalytic activity of the MnII-MOF-5 precatalyst, which in the presence of tBuSO2PhIO catalyzes oxygen atom transfer reactivity to form epoxides from cyclic alkenes with >99% selectivity. These results demonstrate that MOF secondary building units serve as competent platforms for accessing terminal high-valent metal–oxo species that consequently engage in catalytic oxygen atom transfer chemistry owing to the relatively weak ligand fields provided by the SBU.

102 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438