scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
01 Oct 2001-Polymer
TL;DR: In this paper, the authors measured time-resolved small-angle light scattering (SALS) and transmittance properties in a single experimental run, which then was repeated in an optical microscope for direct observation of growth of large-scale structures, and in a rheometer for mechanical spectroscopy.

193 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe new techniques for creating river-dominated (birds foot) deltas with strong channelization in the laboratory and describe a cyclic pattern of delta evolution.
Abstract: [1] Here we describe new techniques for creating river-dominated (birds foot) deltas with strong channelization in the laboratory. The key to achieving strong self-channelization is the addition of a commercially available polymer to the sediment mixture. This polymer enhances the substrate strength increasing the critical erosion stress, an important geomorphic threshold. More importantly it increases the rate of cohesion onset to account for increased rates of morphodynamic evolution in small-scale experiments. A cyclic pattern of delta evolution is observed. The delta “avulsion cycle” begins with channel avulsion, erosion, and channel elongation and ends with channel backfilling and abandonment. This cycle appears to be universal but is subject to a range of controls, including sediment size distribution, sediment concentration, substrate cohesiveness, and Froude number. We propose that the observed depositional cycle is characteristic of an avulsion mechanism that is more complex than current models of fluvial systems, which generally explain avulsion probability as an upstream effect dependent on channel superelevation or levee slope. The experiments suggest that in many distributary channel systems, including deltas, alluvial, and deep water fans, downstream mediated topographic effects or “morphodynamic backwater effects” may dominate over upstream avulsion processes and control the surface mechanics and stratigraphy. The experimental observations are synthesized into a new depositional model for river-dominated deltas which emphasizes the importance of self-organization and feedback in delta surface evolution and stratigraphy.

193 citations

Journal ArticleDOI
TL;DR: This modification is to add polyvinylpyrrolidone to the agarose gel that retards the electrophoretic mobility of denaturing phenolic compounds so that they do not comigrate with nucleic acids.
Abstract: This communication describes a modification of agarose gel electrophoresis to provide a rapid and simple method for the purification of polymerase chain reaction-amplifiable DNA from soil This modification is to add polyvinylpyrrolidone to the agarose gel The polyvinylpyrrolidone addition retards the electrophoretic mobility of denaturing phenolic compounds so that they do not comigrate with nucleic acids

192 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438